Vortex sheet

Last updated

A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. [1] While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous. The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet.

Contents

At high Reynolds numbers, vortex sheets tend to be unstable. In particular, they may exhibit Kelvin–Helmholtz instability.

The formulation of the vortex sheet equation of motion is given in terms of a complex coordinate . The sheet is described parametrically by where is the arclength between coordinate and a reference point, and is time. Let denote the strength of the sheet, that is, the jump in the tangential discontinuity. Then the velocity field induced by the sheet is

The integral in the above equation is a Cauchy principal value integral. We now define as the integrated sheet strength or circulation between a point with arc length and the reference material point in the sheet.

As a consequence of Kelvin's circulation theorem, in the absence of external forces on the sheet, the circulation between any two material points in the sheet remains conserved, so . The equation of motion of the sheet can be rewritten in terms of and by a change of variable. The parameter is replaced by . That is,

This nonlinear integro-differential equation is called the Birkoff-Rott equation. It describes the evolution of the vortex sheet given initial conditions. Greater details on vortex sheets can be found in the textbook by Saffman (1977).

Diffusion of a vortex sheet

Once a vortex sheet, it will diffuse due to viscous action. Consider a planar unidirectional flow at ,

implying the presence of a vortex sheet at . The velocity discontinuity smooths out according to [2]

where is the kinematic viscosity. The only non-zero vorticity component is in the direction, given by

.

Vortex sheet with periodic boundaries

A flat vortex sheet with periodic boundaries in the streamwise direction can be used to model a temporal free shear layer at high Reynolds number. Let us assume that the interval between the periodic boundaries is of length . Then the equation of motion of the vortex sheet reduces to

Continuous vortex sheet approximation by panel method. Roll-up of a vortex sheet due to an initial sinusoidal perturbation. Sheet181722.png
Continuous vortex sheet approximation by panel method. Roll-up of a vortex sheet due to an initial sinusoidal perturbation.

Note that the integral in the above equation is a Cauchy principal value integral. The initial condition for a flat vortex sheet with constant strength is . The flat vortex sheet is an equilibrium solution. However, it is unstable to infinitesimal periodic disturbances of the form . Linear theory shows that the Fourier coefficient grows exponentially at a rate proportional to . That is, higher the wavenumber of a Fourier mode, the faster it grows. However, a linear theory cannot be extended much beyond the initial state. If nonlinear interactions are taken into account, asymptotic analysis suggests that for large and finite , where is a critical value, the Fourier coefficient decays exponentially. The vortex sheet solution is expected to lose analyticity at the critical time. See Moore (1979), and Meiron, Baker and Orszag (1983).

The vortex sheet solution as given by the Birkoff-Rott equation cannot go beyond the critical time. The spontaneous loss of analyticity in a vortex sheet is a consequence of mathematical modeling since a real fluid with viscosity, however small, will never develop singularity. Viscosity acts a smoothing or regularization parameter in a real fluid. There have been extensive studies on a vortex sheet, most of them by discrete or point vortex approximation, with or without desingularization. Using a point vortex approximation and delta-regularization Krasny (1986) obtained a smooth roll-up of a vortex sheet into a double branched spiral. Since point vortices are inherently chaotic, a Fourier filter is necessary to control the growth of round-off errors. Continuous approximation of a vortex sheet by vortex panels with arc wise diffusion of circulation density also shows that the sheet rolls-up into a double branched spiral.

In many engineering and physical applications the growth of a temporal free shear layer is of interest. The thickness of a free shear layer is usually measured by momentum thickness, which is defined as

where and is the freestream velocity. Momentum thickness has the dimension of length and the non-dimensional momentum thickness is given by . Momentum thickness can be used to measure the thickness of a vortex layer.

See also

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<span class="mw-page-title-main">Debye model</span> Method in physics

In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat in a solid. It treats the vibrations of the atomic lattice (heat) as phonons in a box in contrast to the Einstein photoelectron model, which treats the solid as many individual, non-interacting quantum harmonic oscillators. The Debye model correctly predicts the low-temperature dependence of the heat capacity of solids, which is proportional to – the Debye T 3 law. Similarly to the Einstein photoelectron model, it recovers the Dulong–Petit law at high temperatures. Due to simplifying assumptions, its accuracy suffers at intermediate temperatures.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Parabolic cylinder function</span>

In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π known as variant pi represented in Unicode by the character U+03D6ϖGREEK PI SYMBOL.

The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations. The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. It is further extensible to stochastic systems by using the Ito integral. The aim of this method is towards a unified theory for the solution of partial differential equations (PDE); an aim which has been superseded by the more general theory of the homotopy analysis method. The crucial aspect of the method is employment of the "Adomian polynomials" which allow for solution convergence of the nonlinear portion of the equation, without simply linearizing the system. These polynomials mathematically generalize to a Maclaurin series about an arbitrary external parameter; which gives the solution method more flexibility than direct Taylor series expansion.

<span class="mw-page-title-main">Lamb–Oseen vortex</span> Line vortex

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.

In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.

<span class="mw-page-title-main">Studentized range distribution</span>

In probability and statistics, studentized range distribution is the continuous probability distribution of the studentized range of an i.i.d. sample from a normally distributed population.

<span class="mw-page-title-main">Anger function</span>

In mathematics, the Anger function, introduced by C. T. Anger, is a function defined as

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

<span class="mw-page-title-main">Ramanujan's master theorem</span> Mathematical theorem

In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, is a technique that provides an analytic expression for the Mellin transform of an analytic function.

In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis, while an axial stretching causes the vorticity to increase. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the three effects are in balance.

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

<span class="mw-page-title-main">Stable count distribution</span> Probability distribution

In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In combustion, Michelson–Sivashinsky equation describes the evolution of a premixed flame front, subjected to the Darrieus–Landau instability, in the small heat release approximation. The equation was derived by Gregory Sivashinsky in 1977, who along the Daniel M. Michelson, presented the numerical solutions of the equation in the same year. Let the planar flame front, in a uitable frame of reference be on the -plane, then the evolution of this planar front is described by the amplitude function describing the deviation from the planar shape. The Michelson–Sivashinsky equation, reads as

<span class="mw-page-title-main">Sullivan vortex</span> Solution to the Navier–Stokes equations

In fluid dynamics, the Sullivan vortex is an exact solution of the Navier–Stokes equations describing a two-celled vortex in an axially strained flow, that was discovered by Roger D. Sullivan in 1959. At large radial distances, the Sullivan vortex resembles a Burgers vortex, however, it exhibits a two-cell structure near the center, creating a downdraft at the axis and an updraft at a finite radial location. Specifically, in the outer cell, the fluid spirals inward and upward and in the inner cell, the fluid spirals down at the axis and spirals upwards at the boundary with the outer cell. Due to its multi-celled structure, the vortex is used to model tornadoes and large-scale complex vortex structures in turbulent flows.

References

  1. McGraw-Hill Dictionary of Scientific and Technical Terms Retrieved July 2012
  2. Drazin, P. G., & Riley, N. (2006). The Navier-Stokes equations: a classification of flows and exact solutions (No. 334). Cambridge University Press.