Wake therapy

Last updated

Wake therapy (sometimes sleep deprivation therapy) is a specific application of intentional sleep deprivation. It encompasses many sleep-restricting paradigms that aim to address mood disorders with a form of non-pharmacological therapy. [1]

Contents

Description

Example of sleep patterns: Top row depicts a typical sleep pattern (9 h), middle two rows show 1 day of early and late partial sleep deprivation (4 h) and bottom row shows 1 day of total sleep deprivation (0 h night 1). Each box represents 1 hour. Boxes without color indicate periods of wakefulness. Sleep pattern summary.png
Example of sleep patterns: Top row depicts a typical sleep pattern (9 h), middle two rows show 1 day of early and late partial sleep deprivation (4 h) and bottom row shows 1 day of total sleep deprivation (0 h night 1). Each box represents 1 hour. Boxes without color indicate periods of wakefulness.
Electroencephalography cap.' A 64 channel EEG cap is shown here on a watermelon as a model. This type of cap is used to measure scalp electrical signal during many EEG studies of sleep. EEG Cap on melon.jpg
Electroencephalography cap.' A 64 channel EEG cap is shown here on a watermelon as a model. This type of cap is used to measure scalp electrical signal during many EEG studies of sleep.

Wake therapy was first popularized in 1966 and 1971 following articles by Schulte and by Pflug and Tölle describing striking symptom relief in depressed individuals after 1 night of total sleep deprivation. Wake therapy can involve partial sleep deprivation, which usually consists of restricting sleep to 4–6 hours, or total sleep deprivation, in which an individual stays up for more than 24 consecutive hours. During total sleep deprivation, an individual typically stays up about 36 hours, spanning a normal awakening time until the evening after the deprivation. It can also involve shifting the sleep schedule to be later or earlier than a typical schedule (eg. going to bed at 5 am), which is called Sleep Phase Advancement. Older studies involved the repetition of sleep deprivation in the treatment of depression, either until the person showed a response to the treatment or until the person had reached a threshold for the possible number of sleep deprivation treatments.

Chronic sleep deprivation is dangerous and in modern research studies it is no longer common to repeat sleep deprivation treatments close together in time. [2]

Recent closed-loop paradigms have been developed to selectively deprive individuals of some stages—but not others—of sleep. During slow-wave sleep deprivation, researchers monitor the electrical activity on an individual's scalp with electroencephalography (EEG) in real-time. Then, sensory stimulation, like a burst of pink noise, is used to disrupt certain stages of sleep (i.e. by interfering with slow waves during non-rapid eye movement sleep). The goal of these paradigms is to investigate how the deprivation of one type of sleep stage, or sleep microarchitecture, affects outcome measures, as opposed to the deprivation of all sleep stages. One drawback of closed loop sleep deprivation paradigms is that they must be carefully calibrated for each individual. If researchers use auditory stimuli to inhibit slow waves, they must calibrate the volume of the stimulus so that it is loud enough to evoke a sensory response, but quiet enough that it does not wake the patient from sleep. There is some evidence that depriving individuals of slow wave sleep can induce a rapid antidepressant effect in a dose-dependent manner, meaning a greater reduction in slow wave activity relative to baseline is expected to induce greater symptom relief. [1]

Response rate

The response rate to sleep deprivation is generally agreed to be approximately 50%. A 2017 meta-analysis of 66 sleep studies with partial or total sleep deprivation in the treatment of depression found that the overall response rate (immediate relief of symptoms) to total sleep deprivation was 50.4% of individuals, and the response rate to partial sleep deprivation was 53.1% [3] In 2009, a separate review on sleep deprivation found that 1700 patients with depression across 75 separate studies showed a response rate that ranged from 40 - 60%. [4] For reference, the non-response rate for conventional antidepressant pharmacotherapy is estimated to be ~30%, but symptom relief may be delayed by several weeks after the onset of treatment (compared to the immediate, transient relief induced by sleep deprivation). [5] Metrics of mood change vary highly across studies, including surveys of daily mood, or clinician administered interviews that assess the severity of depression symptoms. One benefit to sleep deprivation is that it can provide relief from symptoms within 6–12 hours after sleep deprivation, a rapid effect compared to the 4–6 weeks that it may take conventional treatments to have an effect. [6]

One downside of sleep deprivation therapy is that the beneficial effects are transient, and disappear after even short periods of sleep. [7] [6] Even ultra-short periods of sleep lasting seconds, termed microsleeps, have been shown to cause a relapse in symptoms. [8]

Relapse after recovery sleep

One meta-analysis of over 1700 unmedicated depressed patients who had undergone sleep deprivation found that 83% relapsed in their symptoms after one night of recovery sleep. [9] Only 5-10 % of patients who initially respond to sleep deprivation show sustained remission. [4] However, when sleep deprivation is combined with pharmacological treatments, the number of patients who show sustained remission is much higher, with rates as high as half of patients experiencing sustained remission. [4] Compared to a relapse rate of 83% for unmedicated patients, patients who simultaneously took antidepressants only experienced a relapse rate of 59% after a night of recovery sleep. [9]

Effect of sleep deprivation depends on psychiatric status

The effect of sleep deprivation on mood is dependent on an individual's psychiatric status. Healthy individuals with no history of mood disorders who undergo sleep deprivation often show no change or a worsening of mood after the sleep deprivation. [4] In addition to constant or worsening mood, they also show an increase in tiredness, agitation, and restlessness. [8] Similarly, individuals with psychiatric disorders such as obsessive compulsive disorder or those who suffer from panic attacks do not show reliable improvements in mood disorder. [4]

Types of Sleep Deprivation
TypeAverage Response Rate*Average Response Duration
Partial sleep deprivation (~ 4–6 hours of sleep in either the first or last half of the night)~ 53.1% [3] ~ 1 Day [10]
Total sleep deprivation (no sleep 24–46 hours)~40-60 % [4] ~ 1 Day [10]
Scales Used to Assess Mood Improvements
Scale NameDate PublishedSummaryInter-rater reliabilityTime to completeTypical reduction rate required for "remission"
Hamilton Depression Rating Scale [11] 196021 items0.46 to 0.97 [12] 15–20 minutes30 - 40% reduction in baseline score, or a score <7
Montgomery Asberg Depression Rating Scale [13] 197810 items: 9 based on patient report, 1 rater's observation0.89-0.97 [14] 15–20 minutesscore < 5
Example timecourse of depression rating scores across a night of sleep deprivation: Responders (orange) to sleep deprivation show lower depression scores (and higher positive mood scores) after sleep deprivation. Nonresponders (blue) do not show a significant change in mood scores. Responders vs Nonresponders SD.png
Example timecourse of depression rating scores across a night of sleep deprivation: Responders (orange) to sleep deprivation show lower depression scores (and higher positive mood scores) after sleep deprivation. Nonresponders (blue) do not show a significant change in mood scores.

Side effects

The only known contraindication to sleep deprivation therapy for individuals with unipolar depression is a risk of seizures. Some studies have shown that the stress associated with a night of sleep deprivation can precipitate unexpected medical conditions, such as a heart attack. [15] Other known side effects of sleep deprivation include general fatigue, and headaches. [8] For individuals with bipolar depression, sleep deprivation can sometimes cause a switch into a manic state. [16]

Associated neurological injuries

Studies show that increase in BDNF is adaptative to neuronal injury and that after 3 hours of sleep loss per night it becomes maladaptative and apoptosis occurs. [17] Studies in mices shows neuronal deaths occurring only after 2 days of REM sleep deprivation. However, mice does not models well effects in humans because they sleeps a third of the amount of REM sleep as humans do and caspase-3, which can be used as a proxy for neuron apoptosis, kills 3 times the amount in humans than in mices. [18] Something also not accounted in nearly all of the studies is that acute REM sleep deprivation induces lasting (> 20 days) neuronal apoptosis in mice. [19]

Such histological studies cannot be performed on humans for ethical reasons, but long term studies study shows that sleep quality is more associated to grey matter volume reduction [20] than age. [21] Alternatives must be preferably considered because unlike many psychiatric conditions, neuronal losses and its effects are life-long lasting and cannot be treated currently.

Combination of antidepressant pharmacological intervention and total sleep deprivation

Unipolar depression

Although individual studies have shown a positive effect of combined antidepressant-sleep deprivation therapy, there is currently no widely-accepted consensus about whether combined treatment is superior to pharmacological intervention alone for individuals with unipolar depression. [22] A meta analysis (2020) of more than 368 patients found that sleep deprivation combined with standard treatment did not reduce depressive symptoms compared to standard treatment alone. [22]

Bipolar depression

In contrast with unipolar depression, there is a wide body of evidence that sleep deprivation may be useful in the treatment of bipolar depression. A meta analysis of 90 articles found that combining total sleep deprivation and pharmacological intervention significantly increased the antidepressant effects in patient with bipolar depression when compared to pharmacological intervention alone. [23] The metric that the studies used to assess success of the interventions was a depression symptom scale called the Montgomery-Asberg Depression Scal e [13] or the Hamilton Depression Rating Scale, [11] which both are used to measure someone's mood. Multiple studies have shown that adding a mood stabilizing medication (lithium, amineptine, or pindolol) to total sleep deprivation can induce a significant decrease in depression symptoms that is sustained at least 10 days after the treatment. [23] When considering the long-term effects of the combined total sleep deprivation-pharmacological intervention, it appears that combination therapy can also improve the maintenance of the antidepressant effect for individuals with bipolar mood disorders. These results suggest that adding total sleep deprivation to bipolar depression pharmacological treatment may result in an augmented treatment response. [23]

Total sleep deprivation may not be necessary to achieve the beneficial effect of combined sleep deprivation-antidepressant therapy- partial sleep deprivation may be sufficient. Compliance in these studies is typically measured with actigraphy in order to track movements and time in bed.

Mechanism

The mechanism by which sleep deprivation enhances the effect of antidepressant pharmacological intervention is still under investigation. One hypothesis is that sleep deprivation could enhance the effects of the antidepressant drugs, or it could shorten the delay of the drugs effects, which can take up to several months depending on the drug. [24]

BDNF hypothesis

One hypothesis for the mechanism of sleep deprivation is that it induces a rapid increase in the level of a neutrophic protein called brain-derived neurotrophic factor (BDNF), which mimics the long term effects of some antidepressant drugs. [25] Drug-naive patients with depression typically show lower levels of BDNF than age and sex-matched controls. [26] An increase in BDNF in patients with depression who take a class of drugs called selective serotonin reuptake inhibitors has been reported in several studies to increase after 8 weeks. [26] Similarly, an increase in serum BDNF level is also observed in patients who undergo a single night of total or REM sleep deprivation, however the effect is observed immediately rather than after a long period of time. [25] This increase is hypothesized to be the result of a compensatory mechanism in the brain that produces BDNF to preserve cognitive functions like working memory and attention. [25]

Serotonin hypothesis

Another hypothesis for the mechanism of sleep deprivation is that it may affect the serotonin ergic (5-hydroxytryptamine, or 5-HT]) system, including a receptor called the 5-HT1A receptor. [8] Animals models of sleep deprivation suggest that sleep deprivation increases serotonin neurotransmission in several ways, including 1) increasing extracellular serotonin, 2) increasing serotonin turnover, 3) reducing the sensitivity of serotonin inhibitory autoreceptors and 4) increasing behavioral responsiveness to serotonin precursors. [27] Studies in humans that measure pre-sleep deprivation levels of serotonin with single photon emission computer tomography have provided evidence that responders to sleep deprivation may have a specific deficit in serotoninergic systems. [28]

Barriers to sleep deprivation-antidepressant combination therapy research

One barrier to understanding the effects of sleep deprivation is the lack of a consistent metric of "response". Although there are standard mood surveys and clinician-rated scales, different investigators use different criterion as evidence of response to the treatment. For example, some investigators have required a 30% decrease in the Hamilton Rating Scale, while others required a 50% decrease. [24]

Other barriers include the fact that researchers are not blind to patient condition when they rate the patient's mood, and that many previous studies have not included control groups, but rather only published findings on patient groups without any control reference.

Skeptics of sleep deprivation therapy argue that it is not the sleep deprivation itself, but rather the prolonged contact with other humans and unusual circumstances of the sleep deprivation that lead to improvements in mood symptoms. [4]

Another major barrier is that depression is a highly heterogenous disorder, spanning both unipolar and bipolar types. [29]

Predictors of antidepressant response to sleep deprivation therapy

Diurnal Mood

Changes in mood across 1 day. Healthy individuals will typically show the highest mood after awakening in the morning, with a gradual degradation throughout the day. In contrast, individuals with depression show low mood scores in the morning, that gradually increase throughout the day. These trends are based on group averages; many individuals deviate from these trajectories. DiurnalMood V2.png
Changes in mood across 1 day. Healthy individuals will typically show the highest mood after awakening in the morning, with a gradual degradation throughout the day. In contrast, individuals with depression show low mood scores in the morning, that gradually increase throughout the day. These trends are based on group averages; many individuals deviate from these trajectories.

Mood fluctuations are currently thought to be dependent on circadian processes. A typical healthy individual without a mood disorder shows circadian-locked fluctuations in mood, with positive mood beginning right after the morning awakening, and decaying as the day goes on during prolonged wakefulness. A typical individual with depression will show the opposite mood fluctuation cycle, with a low mood right after morning awakening, which gradually becomes more positive with prolonged wakefulness. These circadian-locked changes across the day are referred to as "diurnal" variations in mood. Evidence across many sleep deprivation studies suggests that an individual's diurnal mood fluctuations can be used to predict whether they will respond to sleep deprivation therapy. [30] Individuals with depression who show the typical low morning mood that increases throughout the day are more likely to respond positively to sleep deprivation than individuals who show mood fluctuations that deviate from the typical pattern. [30] One caveat to these findings is that a single individual may show diurnal fluctuations that vary day-to-day, showing typical diurnal changes on one day while not showing any changes (constant mood) on the next. This complexity was addressed in studies that followed single individuals and administered repeated sleep deprivation on days when the individual showed different mood fluctuations. The studies showed that an individual's ability to show the typical mood fluctuations was a better predictor of whether they would respond to sleep deprivation treatment than the individual's mood state on the particular day that they underwent sleep deprivation. [30]

Short REM latency

Responsiveness to sleep deprivation is also currently believed to be dependent on observable pattern in a person's regular sleep cycle, such as how quickly a person enters into a sleep cycle called rapid eye movement (REM) sleep. [31] Individuals with depression typically show abnormally short REM sleep onsets, meaning they enter into the REM sleep stage earlier in the course of the night than matched healthy controls. Individuals with depression who have short-latency REM sleep typically respond to sleep deprivation therapy more often than individuals with depression who do not show the typical short latency REM sleep pattern. [31]

See also

Related Research Articles

<span class="mw-page-title-main">Antidepressant</span> Class of medication used to treat depression and other conditions

Antidepressants are a class of medications used to treat major depressive disorder, anxiety disorders, chronic pain, and addiction.

An anxiolytic is a medication or other intervention that reduces anxiety. This effect is in contrast to anxiogenic agents which increase anxiety. Anxiolytic medications are used for the treatment of anxiety disorders and their related psychological and physical symptoms.

<span class="mw-page-title-main">Major depressive disorder</span> Mental disorder involving persistent low mood, low self-esteem, and loss of interest

Major depressive disorder (MDD), also known as clinical depression, is a mental disorder characterized by at least two weeks of pervasive low mood, low self-esteem, and loss of interest or pleasure in normally enjoyable activities. Introduced by a group of US clinicians in the mid-1970s, the term was adopted by the American Psychiatric Association for this symptom cluster under mood disorders in the 1980 version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III), and has become widely used since.

Mania, also known as manic syndrome, is a mental and behavioral disorder defined as a state of abnormally elevated arousal, affect, and energy level, or "a state of heightened overall activation with enhanced affective expression together with lability of affect." During a manic episode, an individual will experience rapidly changing emotions and moods, highly influenced by surrounding stimuli. Although mania is often conceived as a "mirror image" to depression, the heightened mood can be either euphoric or dysphoric. As the mania intensifies, irritability can be more pronounced and result in anxiety or anger.

<span class="mw-page-title-main">Mood stabilizer</span> Psychiatric medication used to treat mood disorders

A mood stabilizer is a psychiatric medication used to treat mood disorders characterized by intense and sustained mood shifts, such as bipolar disorder and the bipolar type of schizoaffective disorder.

<span class="mw-page-title-main">Mood disorder</span> Mental disorder affecting the mood of an individual, over a long period of time

A mood disorder, also known as an affective disorder, is any of a group of conditions of mental and behavioral disorder where a disturbance in the person's mood is the main underlying feature. The classification is in the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases (ICD).

<span class="mw-page-title-main">Seasonal affective disorder</span> Medical condition

Seasonal affective disorder (SAD) is a mood disorder subset in which people who typically have normal mental health throughout most of the year exhibit depressive symptoms at the same time each year. It is commonly, but not always, associated with the reductions or increases in total daily sunlight hours that occur during the summer or winter.

<span class="mw-page-title-main">Imipramine</span> Antidepressant

Imipramine, sold under the brand name Tofranil, among others, is a tricyclic antidepressant (TCA) mainly used in the treatment of depression. It is also effective in treating anxiety and panic disorder. Imipramine is taken by mouth.

Dysthymia, also known as persistent depressive disorder (PDD), is a mental and behavioral disorder, specifically a disorder primarily of mood, consisting of similar cognitive and physical problems as major depressive disorder, but with longer-lasting symptoms. The concept was used by Robert Spitzer as a replacement for the term "depressive personality" in the late 1970s.

Atypical depression is defined in the DSM IV as depression that shares many of the typical symptoms of major depressive disorder or dysthymia but is characterized by improved mood in response to positive events. In contrast to those with atypical depression, people with melancholic depression generally do not experience an improved mood in response to normally pleasurable events. Atypical depression also often features significant weight gain or an increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity that results in significant social or occupational impairment.

A major depressive episode (MDE) is a period characterized by symptoms of major depressive disorder. Those affected primarily exhibit a depressive mood for at least two weeks or more, and a loss of interest or pleasure in everyday activities. Other symptoms can include feelings of emptiness, hopelessness, anxiety, worthlessness, guilt, irritability, changes in appetite, difficulties in concentration, difficulties remembering details, making decisions, and thoughts of suicide. Insomnia or hypersomnia and aches, pains, or digestive problems that are resistant to treatment may also be present.

The emphasis of the treatment of bipolar disorder is on effective management of the long-term course of the illness, which can involve treatment of emergent symptoms. Treatment methods include pharmacological and psychological techniques.

Bipolar II disorder (BP-II) is a mood disorder on the bipolar spectrum, characterized by at least one episode of hypomania and at least one episode of major depression. Diagnosis for BP-II requires that the individual must never have experienced a full manic episode. Otherwise, one manic episode meets the criteria for bipolar I disorder (BP-I).

Management of depression is the treatment of depression that may involve a number of different therapies: medications, behavior therapy, psychotherapy, and medical devices.

Scientific studies have found that different brain areas show altered activity in humans with major depressive disorder (MDD), and this has encouraged advocates of various theories that seek to identify a biochemical origin of the disease, as opposed to theories that emphasize psychological or situational causes. Factors spanning these causative groups include nutritional deficiencies in magnesium, vitamin D, and tryptophan with situational origin but biological impact. Several theories concerning the biologically based cause of depression have been suggested over the years, including theories revolving around monoamine neurotransmitters, neuroplasticity, neurogenesis, inflammation and the circadian rhythm. Physical illnesses, including hypothyroidism and mitochondrial disease, can also trigger depressive symptoms.

<span class="mw-page-title-main">Melancholic depression</span> Medical condition

Melancholic depression, or depression with melancholic features, is a DSM-IV and DSM-5 specifier of depressive disorders. This type of depression has specific symptoms that make it different from the standard clinical depression list of symptoms. Furthermore, melancholic depression has a specific subset of causes and can respond differently to treatment than other clinical depression types.

Chronotherapy, also called chronotherapeutics or chronotherapeutic drug delivery, refers to the coordination of therapeutic treatments with an individual's circadian or other rhythmic cycles. This may be done to maximize effectiveness of a specific treatment, minimize possible side effects, or both.

Epigenetics of depression is the study of how epigenetics contribute to depression.

Sleep is known to play an important role in the etiology and maintenance of bipolar disorder. Patients with bipolar disorder often have a less stable and more variable circadian activity. Circadian activity disruption can be apparent even if the person concerned is not currently ill.

Epigenetics of bipolar disorder is the effect that epigenetics has on triggering and maintaining bipolar disorder.

References

  1. 1 2 Minkel, Jared D.; Krystal, Andrew D.; Benca, Ruth M. (2017-01-01), Kryger, Meir; Roth, Thomas; Dement, William C. (eds.), "Chapter 137 – Unipolar Major Depression", Principles and Practice of Sleep Medicine (Sixth Edition), Elsevier, pp. 1352–1362.e5, doi:10.1016/b978-0-323-24288-2.00137-9, ISBN   978-0-323-24288-2 , retrieved 2020-12-11
  2. McEwen, Bruce S. (2006). "Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load". Metabolism. 55 (10 Suppl 2): S20–S23. doi:10.1016/j.metabol.2006.07.008. PMID   16979422.
  3. 1 2 Boland, Elaine M.; Rao, Hengyi; Dinges, David F.; Smith, Rachel V.; Goel, Namni; Detre, John A.; Basner, Mathias; Sheline, Yvette I.; Thase, Michael E.; Gehrman, Philip R. (2017). "Meta-Analysis of the Antidepressant Effects of Acute Sleep Deprivation". The Journal of Clinical Psychiatry. 78 (8): e1020–e1034. doi:10.4088/JCP.16r11332. ISSN   1555-2101. PMID   28937707.
  4. 1 2 3 4 5 6 7 Smeraldi, Francesco Benedetti and Enrico (2009-07-31). "Neuroimaging and Genetics of Antidepressant Response to Sleep Deprivation: Implications for Drug Development". Current Pharmaceutical Design. 15 (22): 2637–2649. doi:10.2174/138161209788957447. PMID   19689334 . Retrieved 2020-11-15.
  5. Baghai, Thomas C.; Rupprecht, Hans-Jurgen Moller and Rainer (2006-01-31). "Recent Progress in Pharmacological and Non-Pharmacological Treatment Options of Major Depression". Current Pharmaceutical Design. 12 (4): 503–515. doi:10.2174/138161206775474422. PMID   16472142 . Retrieved 2020-12-12.
  6. 1 2 Oliwenstein, Lori (2006-04-01). "Lifting Moods by Losing Sleep: An Adjunct Therapy for Treating Depression". Alternative and Complementary Therapies. 12 (2): 66–70. doi:10.1089/act.2006.12.66. ISSN   1076-2809.
  7. Wu, J. C.; Bunney, W. E. (1990-01-01). "The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis". American Journal of Psychiatry. 147 (1): 14–21. doi:10.1176/ajp.147.1.14. ISSN   0002-953X. PMID   2403471.
  8. 1 2 3 4 Hemmeter, Ulrich-Michael; Hemmeter-Spernal, Julia; Krieg, Jürgen-Christian (2010). "Sleep deprivation in depression". Expert Review of Neurotherapeutics. 10 (7): 1101–1115. doi:10.1586/ern.10.83. ISSN   1473-7175. PMID   20586691. S2CID   18064870.
  9. 1 2 Wu, J. C.; Bunney, W. E. (1990-01-01). "The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis". American Journal of Psychiatry. 147 (1): 14–21. doi:10.1176/ajp.147.1.14. ISSN   0002-953X. PMID   2403471.
  10. 1 2 Wirz-Justice, Anna; Benedetti, Francesco; Berger, Mathias; Lam, Raymond W.; Martiny, Klaus; Terman, Michael; Wu, Joseph C. (2005). "Chronotherapeutics (light and wake therapy) in affective disorders". Psychological Medicine. 35 (7): 939–944. doi: 10.1017/S003329170500437X . ISSN   1469-8978. PMID   16045060.
  11. 1 2 Hamilton, Max (1960-02-01). "A Rating Scale for Depression". Journal of Neurology, Neurosurgery & Psychiatry. 23 (1): 56–62. doi:10.1136/jnnp.23.1.56. ISSN   0022-3050. PMC   495331 . PMID   14399272.
  12. Bagby, R. Michael; Ryder, Andrew G.; Schuller, Deborah R.; Marshall, Margarita B. (2004-12-01). "The Hamilton Depression Rating Scale: Has the Gold Standard Become a Lead Weight?". American Journal of Psychiatry. 161 (12): 2163–2177. doi:10.1176/appi.ajp.161.12.2163. ISSN   0002-953X. PMID   15569884.
  13. 1 2 Williams, Janet B. W.; Kobak, Kenneth A. (2008). "Development and reliability of a structured interview guide for the Montgomery-Åsberg Depression Rating Scale (SIGMA)". The British Journal of Psychiatry. 192 (1): 52–58. doi: 10.1192/bjp.bp.106.032532 . ISSN   0007-1250. PMID   18174510.
  14. Sajatovic, Martha; Chen, Peijun; Young, Robert C. (2015-01-01), Tohen, Mauricio; Bowden, Charles L.; Nierenberg, Andrew A.; Geddes, John R. (eds.), "Chapter Nine - Rating Scales in Bipolar Disorder", Clinical Trial Design Challenges in Mood Disorders, San Diego: Academic Press, pp. 105–136, ISBN   978-0-12-405170-6 , retrieved 2020-11-30
  15. Delva NJ, Woo M, Southmayd SE, Hawken ER. Myocardial infarction during sleep deprivation in a patient with dextrocardia - a case report. Anglology 52, 83-86 (2001).
  16. Gold, Alexandra K.; Sylvia, Louisa G. (2016-06-29). "The role of sleep in bipolar disorder". Nature and Science of Sleep. 8: 207–214. doi: 10.2147/nss.s85754 . PMC   4935164 . PMID   27418862.
  17. Wu, J.; Dou, Y.; Ladiges, W. C. (2020). "Adverse Neurological Effects of Short-Term Sleep Deprivation in Aging Mice Are Prevented by SS31 Peptide". Clocks & Sleep. 2 (3): 325–333. doi: 10.3390/clockssleep2030024 . PMC   7573804 . PMID   33089207.
  18. Kerr, L. E.; McGregor, A. L.; Amet, L. E.; Asada, T.; Spratt, C.; Allsopp, T. E.; Harmar, A. J.; Shen, S.; Carlson, G.; Logan, N.; Kelly, J. S.; Sharkey, J. (2004). "Mice overexpressing human caspase 3 appear phenotypically normal but exhibit increased apoptosis and larger lesion volumes in response to transient focal cerebral ischaemia". Cell Death and Differentiation. 11 (10): 1102–1111. doi: 10.1038/sj.cdd.4401449 . PMID   15153940. S2CID   9525364.
  19. Soto-Rodriguez, S.; Lopez-Armas, G.; Luquin, S.; Ramos-Zuñiga, R.; Jauregui-Huerta, F.; Gonzalez-Perez, O.; Gonzalez-Castañeda, R. E. (2016). "Rapid Eye Movement Sleep Deprivation Produces Long-Term Detrimental Effects in Spatial Memory and Modifies the Cellular Composition of the Subgranular Zone". Frontiers in Cellular Neuroscience. 10: 132. doi: 10.3389/fncel.2016.00132 . PMC   4884737 . PMID   27303266.
  20. "Poor Quality Sleep May Be Linked to Shrinking Brain". WebMD. Retrieved 2023-03-09.
  21. Van Someren, Eus J. W.; Oosterman, J. M.; Van Harten, B.; Vogels, R. L.; Gouw, A. A.; Weinstein, H. C.; Poggesi, A.; Scheltens, Ph.; Scherder, E. J. A. (2019-04-01). "Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk". Neurobiology of Learning and Memory. Sleep and Hippocampal Function. 160: 132–138. doi: 10.1016/j.nlm.2018.05.017 . hdl: 2066/202856 . ISSN   1074-7427. PMID   29864525. S2CID   46932040.
  22. 1 2 Ioannou, Michael; Wartenberg, Constanze; Greenbrook, Josephine T.V.; Larson, Tomas; Magnusson, Kajsa; Schmitz, Linnea; Sjögren, Petteri; Stadig, Ida; Szabó, Zoltán; Steingrimsson, Steinn (2020-11-03). "Sleep deprivation as treatment for depression: systematic review and meta‐analysis". Acta Psychiatrica Scandinavica. 143 (1): 22–35. doi: 10.1111/acps.13253 . ISSN   0001-690X. PMC   7839702 . PMID   33145770.
  23. 1 2 3 Ramirez-Mahaluf, Juan P.; Rozas-Serri, Enzo; Ivanovic-Zuvic, Fernando; Risco, Luis; Vöhringer, Paul A. (2020). "Effectiveness of Sleep Deprivation in Treating Acute Bipolar Depression as Augmentation Strategy: A Systematic Review and Meta-Analysis". Frontiers in Psychiatry. 11: 70. doi: 10.3389/fpsyt.2020.00070 . ISSN   1664-0640. PMC   7052359 . PMID   32161557.
  24. 1 2 Leibenluft, E.; Wehr, T. A. (1992-02-01). "Is sleep deprivation useful in the treatment of depression?". American Journal of Psychiatry. 149 (2): 159–168. doi:10.1176/ajp.149.2.159. ISSN   0002-953X. PMID   1734735.
  25. 1 2 3 Rahmani, Maryam; Rahmani, Farzaneh; Rezaei, Nima (2020-02-01). "The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression". Neurochemical Research. 45 (2): 221–231. doi:10.1007/s11064-019-02914-1. ISSN   1573-6903. PMID   31782101. S2CID   208330722.
  26. 1 2 Lee, Bun-Hee; Kim, Yong-Ku (2010). "The Roles of BDNF in the Pathophysiology of Major Depression and in Antidepressant Treatment". Psychiatry Investigation. 7 (4): 231–235. doi:10.4306/pi.2010.7.4.231. ISSN   1738-3684. PMC   3022308 . PMID   21253405.
  27. Benedetti, Francesco (2012). "Antidepressant chronotherapeutics for bipolar depression". Dialogues in Clinical Neuroscience. 14 (4): 401–411. doi:10.31887/DCNS.2012.14.4/fbenedetti. PMC   3553570 . PMID   23393416.
  28. Peterson, Michael J.; Benca, Ruth M. (2011-01-01), Kryger, Meir H.; Roth, Thomas; Dement, William C. (eds.), "Chapter 130 - Mood Disorders", Principles and Practice of Sleep Medicine (Fifth Edition), Philadelphia: W.B. Saunders, pp. 1488–1500, doi:10.1016/b978-1-4160-6645-3.00130-4, ISBN   978-1-4160-6645-3 , retrieved 2020-12-12
  29. Flint, Jonathan; Kendler, Kenneth S. (2014). "The Genetics of Major Depression". Neuron. 81 (3): 484–503. doi:10.1016/j.neuron.2014.01.027. PMC   3919201 . PMID   24507187.
  30. 1 2 3 Wirz-Justice, Anna (2008). "Diurnal variation of depressive symptoms". Dialogues in Clinical Neuroscience. 10 (3): 337–343. doi:10.31887/DCNS.2008.10.3/awjustice. ISSN   1294-8322. PMC   3181887 . PMID   18979947.
  31. 1 2 Berger, M.; Calker, D. Van; Riemann, D. (2003). "Sleep and manipulations of the sleep–wake rhythm in depression". Acta Psychiatrica Scandinavica. 108 (s418): 83–91. doi:10.1034/j.1600-0447.108.s418.17.x. ISSN   1600-0447. PMID   12956821. S2CID   23918249.

Sources