Warrawoona Group

Last updated
Warrawoona Group
Stratigraphic range: Paleoarchean
~3465 Ma
Warrawoona geology 2.JPG
Warrawoona and Western Australia showing geological classification
Type Geological group
Unit of Pilbara Supergroup
Lithology
Primary Chert
Other Archean felsic volcanic rocks
Location
Coordinates 21°42′S118°0′E / 21.700°S 118.000°E / -21.700; 118.000 (Warrawoona) Coordinates: 21°42′S118°0′E / 21.700°S 118.000°E / -21.700; 118.000 (Warrawoona)
Region Western Australia
CountryFlag of Australia (converted).svg  Australia
Extent Pilbara craton
Type section
Named for Warrawoona
Named by Arthur Hugh Hickman
Year defined1983
Australia relief map.jpg
Pink ff0080 pog.svg
Warrawoona Group (Australia)
Australia Western Australia relief location map.png
Pink ff0080 pog.svg
Warrawoona Group (Western Australia)

The Warrawoona Group is a geological unit in Western Australia containing putative fossils of cyanobacteria cells. Dated 3.465 Ga, these microstructures, found in Archean chert, are considered to be the oldest known geological record of life on Earth. [1] [2] [3]

Contents

Description

The fossils in this group were discovered by Arthur Hugh Hickman in 1983 in Warrawoona, 21°42′S118°0′E / 21.700°S 118.000°E / -21.700; 118.000 (Warrawoona) , a region on the Pilbara craton in the northern part of Pilbara province.

Whether or not the fossils are authentic was disputed in the past, as abiotic processes could not be ruled out. [4] [5] Currently the fossils are thought to be of biological origin, however there is no conclusive evidence of fossilized organisms in the formation, and whether the lines in the rock are fossilized stromatolites. [6]

The rocks also include felsic volcanic rocks. [7]

See also

Related Research Articles

Fossil Preserved remains or traces of organisms from a past geological age

A fossil is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood, oil, coal, and DNA remnants. The totality of fossils is known as the fossil record.

Archean Second eon of the geologic timescale

The Archean Eon is one of the four geologic eons of Earth's history, occurring 4,000 to 2,500 million years ago. During the Archean, the Earth's crust had cooled enough to allow the formation of continents and the beginning of life on Earth.

Stromatolite Layered sedimentary structures formed by the growth of bacteria or algae

Stromatolites or stromatoliths are layered mounds, columns, and sheet-like sedimentary rocks that were originally formed by the growth of layer upon layer of cyanobacteria, a single-celled photosynthesizing microbe. Fossilized stromatolites provide records of ancient life on Earth. Lichen stromatolites are a proposed mechanism of formation of some kinds of layered rock structure that are formed above water, where rock meets air, by repeated colonization of the rock by endolithic lichens.

Marble Bar, Western Australia Town in Western Australia

Marble Bar is a town and rock formation in the Pilbara region of north-western Western Australia. It is well known for its extremely hot weather, with a mean maximum temperature second only to Wyndham, Western Australia.

The Mesoarchean is a geologic era within the Archean Eon, spanning 3,200 to 2,800 million years ago. The era is defined chronometrically and is not referenced to a specific level in a rock section on Earth. Fossils from Australia show that stromatolites have grown on Earth since the Mesoarchean. The Pongola glaciation occurred around 2,900 million years ago. The first supercontinent Vaalbara broke up during this era about 2,800 million years ago.

Gunflint chert

The Gunflint chert is a sequence of banded iron formation rocks that are exposed in the Gunflint Range of northern Minnesota and northwestern Ontario along the north shore of Lake Superior. The Gunflint Chert is of paleontological significance, as it contains evidence of microbial life from the Paleoproterozoic. The Gunflint Chert is composed of biogenic stromatolites. At the time of its discovery in the 1950s, it was the earliest form of life discovered and described in scientific literature, as well as the earliest evidence for photosynthesis. The black layers in the sequence contain microfossils that are 1.9 to 2.3 billion years in age. Stromatolite colonies of cyanobacteria that have converted to jasper are found in Ontario. The banded ironstone formation consists of alternating strata of iron oxide-rich layers interbedded with silica-rich zones. The iron oxides are typically hematite or magnetite with ilmenite, while the silicates are predominantly cryptocrystalline quartz as chert or jasper, along with some minor silicate minerals.

Isua Greenstone Belt Archean greenstone belt in southwestern Greenland

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland. The belt is aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks. The occurrence of boninitic geochemical signatures, characterized by extreme depletion in trace elements that are not fluid mobile, offers evidence that plate tectonic processes in which lithic crust is melted may have been responsible for the creation of the belt. Another theory posits that the belt formed via a process known as vertical plate tectonics.

Vaalbara Archaean supercontinent from about 3.6 to 2.7 billion years ago

Vaalbara was an Archean supercontinent consisting of the Kaapvaal Craton and the Pilbara Craton. E. S. Cheney derived the name from the last four letters of each craton's name. The two cratons consist of crust dating from 2.7 to 3.6 Gya, which would make Vaalbara one of Earth's earliest supercontinents.

Pilbara Craton An old and stable part of the continental lithosphere located in Pilbara, Western Australia

The Pilbara Craton is an old and stable part of the continental lithosphere located in Pilbara, Western Australia.

Shelly limestone highly fossiliferous limestone

Shelly limestone is a highly fossiliferous limestone, composed of a number of fossilized organisms such as brachiopods, bryozoans, crinoids, sponges, corals and mollusks. It varies in color, texture and hardness. Coquina is a poorly indurated form of shelly limestone.

Warrawoona

Warrawoona32°42′S118°0′E is a region of Western Australia in the Pilbara province.

Microbially induced sedimentary structure

Microbially induced sedimentary structures (MISS) are primary sedimentary structures formed by the interaction of microbes with sediment and physical agents of erosion, deposition, and transportation. The structures commonly form when microbial mats are preserved in the sedimentary geological record. There are 17 main types of macroscopic and microscopic MISS. Of those, wrinkle structures and microbial mat chips are the most abundant in the fossil record. Other MISS include sinoidal structures, polygonal oscillation cracks, multidirected ripple marks, erosional remnants and pockets, or gas domes.

Archean life in the Barberton Greenstone Belt Some of the most widely accepted fossil evidence for Archean life

The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.

James William Schopf is an American paleobiologist and professor of earth sciences at the University of California Los Angeles. He is also Director of the Center for the Study of Evolution and the Origin of Life, and a member of the Department of Earth and Space Sciences, the Institute of Geophysics and Planetary Physics, and the Molecular Biology Institute at UCLA. He is most well known for his study of Precambrian prokaryotic life in Australia's Apex chert. Schopf has published extensively in the peer reviewed literature about the origins of life on Earth. He is the first to discover Precambrian microfossils in stromatolitic sediments of Australia (1965), South Africa (1966), Russia (1977), India (1978), and China (1984). He served as NASA's principal investigator of lunar samples during 1969–1974.

Stanley Awramik is an American biogeologist and paleontologist. He is best known for his work related to the Precambrian. In 2013, he was inducted as a fellow of the Geological Society of America.

Eastern Pilbara Craton

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

Fig Tree Formation

The Fig Tree Formation, also called Fig Tree Group, is a stromatolite-containing geological formation in South Africa. The rock contains fossils of microscopic life forms of about 3.26 billion years old. Identified organisms include the bacterium Eobacterium isolatus and the algae-like Archaeosphaeroides barbertonensis. The fossils in the Fig Tree Formation are considered some of the oldest known organisms on Earth, and provide evidence that life may have existed much earlier than previously thought. The formation comprises shales, turbiditic, lithic greywackes, volcanoclastic sandstones, chert, turbiditic siltstone, conglomerate, breccias, mudstones, and iron-rich shales.

Eoarchean geology

Eoarchean geology is the study of the oldest preserved crustal fragments of Earth during the Eoarchean era from 4 to 3.6 billion years ago. Major well-preserved rock units dated Eoarchean are known from three localities, the Isua Greenstone Belt in Southwest Greenland, the Acasta Gneiss in the Slave Craton in Canada, and the Nuvvuagittuq Greenstone Belt in the eastern coast of Hudson Bay in Quebec. From the dating of rocks in these three regions scientists suggest that plate tectonics could go back as early as Eoarchean.

Archean felsic volcanic rocks

Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.

Abigail Allwood is an Australian geologist and astrobiologist at the NASA Jet Propulsion Laboratory (JPL) who studies stromatolites, detection of life on other planets, and evolution of life on early Earth. Her early work gained notability for finding evidence of life in 3.45 billion year old stromatolites in the Pilbara formation in Australia, which was featured on the cover of the journal Nature. She is now a principal investigator on the Mars Rover 2020 team searching for evidence of life on Mars using the Planetary Instrument for X-Ray Lithochemistry (PIXL). Allwood is the first female and first Australian principal investigator on a NASA Mars mission.

References

  1. Skrzypczak, A.; Derenne, S.; Robert, F.; Binet, L.; Gourier, D.; Rouzard, J.-N.; Clinard, C. (March 2004). Characterization Of The Organic Matter In An Archean Chert (Warrawoona, Australia) (PDF). 35th Lunar and Planetary Science Conference. League City, TX. Bibcode:2004LPI....35.1241S.
  2. Derenne, S.; Robert, F.; Skrzypczak-Bonduelle, A.; Gourier, D.; Binet, L.; Rouzaud, J.-N. (July 2008). "Molecular evidence for life in the 3.5 billion year old Warrawoona chert". Earth and Planetary Science Letters. 272 (1–2): 476–480. Bibcode:2008E&PSL.272..476D. doi:10.1016/j.epsl.2008.05.014.
  3. Schopf, J. W.; Packer, B. M. (September 1986). "Newly discovered early Archean (3.4–3.5 Ga Old) microorganisms from the Warrawoona Group of Western Australia". Origins of Life and Evolution of the Biosphere. 16 (3–4): 339–340. Bibcode:1986OrLi...16..339S. doi:10.1007/BF02422059.
  4. Brasier, M. D.; Green, O. R.; Jephcoat, A. P.; Kleppe, A. K.; Van Kranendonk, M. J.; Lindsay, J. F.; Steele, A.; Grassineau, N. V. (March 2002). "Questioning the evidence for Earth's oldest fossils". Nature. 416 (6876): 76–81. Bibcode:2002Natur.416...76B. doi:10.1038/416076a. PMID   11882895.
  5. Hofmann, H. J. (June 2004). "Archean Microfossils and Abiomorphs". Astrobiology. 4 (2): 135–136. Bibcode:2004AsBio...4..135H. doi:10.1089/153110704323175115. PMID   15253835.
  6. Wacey, D.; Kilburn, M. R.; Saunders, M.; Cliff, J.; Brasier, M. D. (August 2011). "Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia". Nature Geoscience. 4 (10): 698–702. Bibcode:2011NatGe...4..698W. doi:10.1038/ngeo1238.
  7. DiMarco, Michael J.; Lowe, Donald R. (August 1989). "Stratigraphy and sedimentology of an early Archean felsic volcanic sequence, eastern Pilbara Block, Western Australia, with special reference to the Duffer Formation and implications for crustal evolution". Precambrian Research. 44 (2): 147–169. Bibcode:1989PreR...44..147D. doi:10.1016/0301-9268(89)90080-6.

Further reading