Weather testing of polymers

Last updated

Accelerated photo-ageing of polymers in SEPAP units is the controlled polymer degradation and polymer coating degradation under lab or natural conditions.

Contents

The prediction of the ageing of plastic materials is an important subject that concerns both users and manufacturers of materials (polymers, fillers and various additives) or intermediates that are the many transformers that use their "thermoplastic" property for the manufacture of multiple objects by different processes such as extrusion, injection molding, etc.

The reliability of the materials is one of the many guarantees that are increasingly required for all the manufactured objects we use every day and it is therefore perfectly integrated into the "sustainable development" approach. However, predicting the behavior of a material or an industrial part over time is a delicate process, because many parameters must be taken into account.

The resistance to "natural" ageing itself is variable, it depends on temperature, sunshine (climate, latitude, humidity, ...) and on many other factors (physical constraints, level of pollution, ...), difficult to assess accurately. The simulation of this ageing by the use of artificial light sources and other physical constraints (temperature, sprinkling of water simulating rain, ...) has been the subject of many developments that are the basis of several standards, ISO, ASTM, etc.

After all, accelerating this ageing to offer, for example, ten-year guarantees or validate stabilizing agents is a more complex approach that must be based on solid scientific backgrounds. Other applications, such as those of materials that must degrade quickly in the environment, are also concerned by this approach.

1. Mechanistic approach 2. Photo-ageing 3. SEPAP accelerated artificial photo-ageing units 4. Medium and ultra-acceleration 5. Role of water 6. CNEP 7. Notes and references

1. Mechanistic approach

It has long been known that most ageing of these materials is based on a chemical reaction called "radical oxidation". Under the influence of external stresses that generate primary radicals attacking chemical bonds (especially the most abundant ones, between carbon and hydrogen), reactions occur with atmospheric oxygen. This led to the formation of many chemical entities, among which hydroperoxides and peroxides were the key products; they are both stable enough to be detected and reactive enough to break down into many by-products such as ketones, alcohols, acids, ... which are easily detectable by spectroscopic methods. Another important element, the decomposition of one of these peroxidized groups (like hydrogen peroxide, H2O2) generates two new radicals, which leads to a self-acceleration of ageing.

These elementary chemical reactions lead more or less quickly to a deterioration of the physical properties of polymer materials and their precise analysis using infrared spectroscopy methods makes it possible both to understand the degradation mechanism and to make predictions about the long-term behavior of polymers [1].

Polypropylene, a common material in our everyday environment, is a very significant example of this approach. Its chemical structure where many tertiary carbons are present (bound to three carbon atoms and only one hydrogen) makes it a particularly sensitive material to ageing. Its use in the absence of stabilizing agents, in the form of film for example, is completely impossible without finding degradation (in a few days it quickly becomes opaque and brittle).

2. Photo-ageing of polymers

Sunlight (whose wavelengths on earth are greater than 295 nm) is among the main factors affecting the natural ageing of plastics along with temperature and atmospheric oxygen. It should be noted, however, that if the influence of temperature can be analyzed separately (ageing in the dark), it is not the same for photo-ageing which is always associated with a temperature effect, it is also often rightly qualified as "photo-thermal".

The simulation of photothermal ageing is generally done by exposing samples in centers approved for their geographical location (Arizona, Florida, South of France) and their ability to know precisely the exposure conditions (duration and intensity of sunshine, temperature, humidity level, etc.). Sometimes mirror systems make it possible to intensify the radiation. The simulation can also be carried out in the laboratory, we generally use xenon lamps whose spectrum, after eliminating short wavelengths, is very similar to that of the sun. Most instruments allow control of light intensity, temperature of the surrounding environment, humidity level and water sprinklers can be programmed to simulate the effect of rain.

It should be noted here that the use of xenon lamps is based on a similarity with the solar spectrum but that the principles of photochemistry (in particular the existence of vibrational relaxations of excited states) do not exclude the use of other light sources to simulate or accelerate photothermal ageing. Mercury-vapor lamps, properly filtered, have a discontinuous spectrum with discrete radiations (unlike the spectra of xenon and the sun which are continuous). This UV emission of Hg lamps also makes it possible to predict the durability of polymer materials formulated under use.

3. SEPAP accelerated artificial photo-ageing units

As early as 1978, the principles mentioned above led to the design of specific units by the Laboratory of Molecular and Macromolecular Photochemistry [2], now integrated into the Institute of Chemistry of Clermont-Ferrand (https://iccf.uca.fr). One of these units, referenced SEPAP 12–24, was long built and marketed by ATLAS MTT (picture 1) until the release of a new SEPAP MHE model in 2014 (picture 2) (https://www.atlas-mts.com).

Figure 1: Detail of the inside of SEPAP 12-24 Unit (4 lamps) Sepap12.24.jpg
Figure 1: Detail of the inside of SEPAP 12-24 Unit (4 lamps)

In the SEPAP 12-24 unit, light excitation is provided by four 400 Watts medium-pressure mercury vapor lamps placed at the four corners of a parallelepiped. These lamps, whose shortest wavelengths are eliminated by a borosilicate glass envelope, have lifetime of 5000 hours. The temperature of the exposed surfaces (and not of the surrounding environment) is maintained and controlled by a thermoprobe in contact with a reference film of the same composition as the samples to be exposed. This temperature can vary from 45 °C to 80 °C and a good compromise between photochemical excitation and thermal excitation is always ensured at the level of the samples. 24 samples of about 1X5 cm are positioned on a metallic sample holder rotating at a constant speed in the center of the unit to ensure homogeneous illumination of all samples. The sample size is suitable for monitoring chemical evolution, with a low conversion rate, by infrared spectroscopy. SEPAP 12-24 enclosures must be calibrated using polyethylene calibration films. The detailed analysis of the mechanism of chemical evolution that controls degradation could be proposed for a large number of polymers [3,4] and it could be verified that this mechanism was identical to that which intervened in natural ageing on approved site or during real outdoor use. Today, a dozen French and European standards refer to these enclosures (agricultural films, cables) and about twenty companies have included SEPAP tests in their specifications for their subcontractors.

The new SEPAP MHE (Medium and High Energy) unit is equipped with a single medium-pressure mercury source with variable power allowing a first level of acceleration corresponding to that of the SEPAP 12-24 unit and a second level allowing an acceleration about 3 times higher (Ultra-Acceleration). It was developed by CNEP, Renault, PSA, PolyOne and Atlas-Ametek. The source has a central position and the samples are fixed on a sample holder animated by a uniform rotational movement around the source.

The analysis of the chemical evolution under the accelerated conditions of a SEPAP 12-24 or MHE units and the analysis of the chemical evolution in an early phase of exposure in outdoor use in the field (1 year or more) make it possible to define an acceleration factor if we know how to discern in the mechanism the formation of a "critical product" representative of the reaction pattern. This acceleration factor cannot be universal for all families of formulated materials that evolve according to very different reaction mechanisms, but it can be determined for each family of polymers. For example, it is close to 12 (1 month = 1 year in the field in the South of France) for the reference polyethylene. These acceleration factors have indeed been determined in very specific cases of polymers of well-defined formulations and exposed in forms that allow to take into account the diffusion of oxygen (avoid any oxygen starvation) and the migrations of stabilizers ("reservoir" effect).

The SEPAP MHE unit allows, for example, to simulate a year of exposure of a polypropylene in the south of France in 300 hours (on average acceleration) or 100 hours (in ultra-acceleration mode).

4. Medium and Ultra-acceleration

Can photo-ageing be further accelerated? There are many ways to achieve this, but there is a great risk of no longer being representative of natural ageing. From the photochemical point of view, multi-photonic effects are for example to be feared, just as the oxygen starvation may occur very quickly and strongly disrupt the degradation mechanisms. The ultra-accelerated approach developed in the SEPAP MHE unit makes it possible to solve in particular the problem of very long-term stability required for certain applications (cable-stayed bridges, photovoltaic panels, wind turbines, ...) or the need to be able to homologate a new material very quickly (automotive industry, ...).

5. Role of water

It is first of all its physical role (leaching) that has been highlighted in particular in polyolefins (polyethylene, polypropylene). Polar degradation products and low molecular weights can be removed from the surface of the material and thus mask the ageing phenomenon. It is possible to operate the SEPAP MHE with periodic sprinklers of water by avoiding too abundant sprinkling that can lead to an underestimation of ageing. Too frequent water sprinkling can also lead to premature extraction of low molecular weight stabilizers and wrongly disqualify polymeric materials. To examine the combined role of water with other physico-chemical constraints (Ultraviolet – heat – oxygen), a prototype SEPAP 12-24 H unit was developed. In this unit the sample holder is immersed in temperature-controlled liquid water that is re-oxygenated in outdoor circulation.

6. Centre National d'Evaluation de Photoprotection (called CNEP)

In 1986, the work of the Laboratory of Molecular and Macromolecular Photochemistry led to the creation of a transfer center CNEP to put its skills in the photo-ageing of polymer materials at the service of manufacturers, either to analyze failures of their materials or to conduct studies of collective interest.

Studies to predict the behavior of polymeric materials subjected to different environmental constraints (sunlight, heat with or without moisture) or failure analyses of polymer parts can be carried out in collaboration with the R&D departments of manufacturers. The CNEP can also be a partner in collaborative projects led by industrialists on an innovative research theme.

The Centre National d'Evaluation de Photoprotection is now associated with about sixty companies and annually carries out more than 450 studies covering all areas of application of polymers including works of art. It is also approved at the French national level as a "Technological Resources Center". (cnep-fr.com)

Notes and references

1. ↑ Jacques Lacoste, Sandrine Therias, '’Vieillissement des matériaux polymères et des composites'’ in L'actualité chimique, 2015, 395, 38-43.

2. ↑ Jacques Lacoste, David Carlsson,"Gamma-, photo-, and thermally-initiated oxidation of linear low density polyethylene: a quantitative comparison of oxidation products" in J. Polym. Sci., Polym. Chem. Ed. A, 1992, 30, 493-500 and 1993, 31, 715-722 (polypropylène)

3. ↑ Jacques Lemaire,"Predicting polymer durability" in Chemtech, October 1996, 42- 47

4. ↑ Jacques Lemaire, René Arnaud, Jean Luc Gardette, Jacques Lacoste, Henri Seinera, "Zuverlässigkeit der methode der photo-schnellalterung bei polymeren. ( Reliability of the accelerated photo-ageing method)", Kunststoffe, German Plastics (int Ed.), 1986, 76, 149-153

See also

Related Research Articles

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Polypropylene</span> Thermoplastic polymer

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

<span class="mw-page-title-main">Polymer degradation</span> Alteration in the polymer properties under the influence of environmental factors

Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.

<span class="mw-page-title-main">Thermogravimetric analysis</span> Thermal method of analysis

Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions.

<span class="mw-page-title-main">Organic peroxides</span> Organic compounds of the form R–O–O–R’

In organic chemistry, organic peroxides are organic compounds containing the peroxide functional group. If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. The O−O bond of peroxides easily breaks, producing free radicals of the form RO. Thus, organic peroxides are useful as initiators for some types of polymerization, such as the acrylic, unsaturated polyester, and vinyl ester resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can explosively combust. Organic peroxides, like their inorganic counterparts, are often powerful bleaching agents.

Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

<span class="mw-page-title-main">Photodegradation</span> Alteration of materials by light

Photodegradation is the alteration of materials by light. Commonly, the term is used loosely to refer to the combined action of sunlight and air, which cause oxidation and hydrolysis. Often photodegradation is intentionally avoided, since it destroys paintings and other artifacts. It is, however, partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies. Photodegradation does not apply to how materials may be aged or degraded via infrared light or heat, but does include degradation in all of the ultraviolet light wavebands.

A geomembrane is very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid migration in a human-made project, structure, or system. Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or polymer sprays, or as multilayered bitumen geocomposites. Continuous polymer sheet geomembranes are, by far, the most common.

Applied spectroscopy is the application of various spectroscopic methods for the detection and identification of different elements or compounds to solve problems in fields like forensics, medicine, the oil industry, atmospheric chemistry, and pharmacology.

<span class="mw-page-title-main">Hindered amine light stabilizers</span>

Hindered amine light stabilizers (HALS) are chemical compounds containing an amine functional group that are used as stabilizers in plastics and polymers. These compounds are typically derivatives of tetramethylpiperidine and are primarily used to protect the polymers from the effects of photo-oxidation; as opposed to other forms of polymer degradation such as ozonolysis. They are also increasingly being used as thermal stabilizers, particularly for low and moderate level of heat, however during the high temperature processing of polymers they remain less effective than traditional phenolic antioxidants.

<span class="mw-page-title-main">Forensic polymer engineering</span> Study of failure in polymeric products

Forensic polymer engineering is the study of failure in polymeric products. The topic includes the fracture of plastic products, or any other reason why such a product fails in service, or fails to meet its specification. The subject focuses on the material evidence from crime or accident scenes, seeking defects in those materials that might explain why an accident occurred, or the source of a specific material to identify a criminal. Many analytical methods used for polymer identification may be used in investigations, the exact set being determined by the nature of the polymer in question, be it thermoset, thermoplastic, elastomeric or composite in nature.

<span class="mw-page-title-main">Environmental stress cracking</span> Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

In polymers, such as plastics, thermal degradation refers to a type of polymer degradation where damaging chemical changes take place at elevated temperatures, without the simultaneous involvement of other compounds such as oxygen. Simply put, even in the absence of air, polymers will begin to degrade if heated high enough. It is distinct from thermal-oxidation, which can usually take place at less elevated temperatures.

Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">Photo-oxidation of polymers</span>

In polymer chemistry photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering.

Oxo-degradation is a process of plastic degradation utilizing oxidation to reduce the molecular weight of plastic, rendering the material accessible to bacterial and fungal decomposition. To change the Molecular structure in order to break down under sunlight, the plastic can be broken down and eaten by micro-organisms. Oxo-degradable plastics- composed of polymers such as polyethylene (PE) or polypropylene (PP) -contain a prodegradant catalyst, typically a salt of manganese or iron.

The Center National for Evaluation of Photoprotection (CNEP), also known as the National Institute for the Evaluation of Photoprotection, is a French research center dedicated to the study and analysis of plastic materials. Its focus lies in understanding the durability and identifying the failure mechanisms in these materials, which are primarily composed of polymers.

<span class="mw-page-title-main">Twinwall plastic</span>

Twin-wall plastic, specifically twin-wall polycarbonate, is an extruded multi-wall polymer product created for applications where its strength, thermally insulative properties, and moderate cost are ideal. Polycarbonate, which is most commonly formed through the reaction of Bisphenol A and Carbonyl Chloride, is an extremely versatile material. It is significantly lighter than glass, while managing to be stronger, more flexible, and more impact resistant. Twin-wall polycarbonate is used most commonly for green houses, where it can support itself in a structurally sound configuration, limit the amount of UV light due to its nominal translucence, and can withstand the rigors of daily abuse in an outdoor environment. The stagnant air in the cellular space between sheets provides insulation, and additional cell layers can be extruded to enhance insulative properties at the cost of light transmission.

<span class="mw-page-title-main">Biodegradable bag</span> Bag capable of being decomposed

Biodegradable bags are bags that are capable of being decomposed by bacteria or other living organisms.

Biodegradable additives are additives that enhance the biodegradation of polymers by allowing microorganisms to utilize the carbon within the polymer chain as a source of energy. Biodegradable additives attract microorganisms to the polymer through quorum sensing after biofilm creation on the plastic product. Additives are generally in masterbatch formation that use carrier resins such as polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET).

References

Web references