In geometry, the Weber problem, named after Alfred Weber, is one of the most famous problems in location theory. It requires finding a point in the plane that minimizes the sum of the transportation costs from this point to n destination points, where different destination points are associated with different costs per unit distance.
The Weber problem generalizes the geometric median, which assumes transportation costs per unit distance are the same for all destination points, and the problem of computing the Fermat point, the geometric median of three points. For this reason it is sometimes called the Fermat–Weber problem, although the same name has also been used for the unweighted geometric median problem. The Weber problem is in turn generalized by the attraction–repulsion problem, which allows some of the costs to be negative, so that greater distance from some points is better.
The Fermat problem | The Weber problem | The attraction-repulsion problem | |
---|---|---|---|
First formulated by | Fermat (before 1640) | Simpson (1750) | Tellier (1985) |
Geometrical solution of the triangle problem | Torricelli (1645) | Simpson (1750) | Tellier (2013) |
Direct numerical solution of the triangle problem | Tellier (1972) | Tellier (1972) | Tellier (1985) |
Iterative numerical solution of the problem | E. Weiszfeld (1937), Kuhn and Kuenne (1962) | E. Weiszfeld (1937), Kuhn and Kuenne (1962) | Chen, Hansen, Jaumard and Tuy (1992) |
In the triangle case, the Fermat problem consists in locating a point D with respect to three points A, B, C in such a way that the sum of the distances between D and each of the three other points is minimized. It was formulated by the famous French mathematician Pierre de Fermat before 1640, and it can be seen as the true beginning of both location theory, and space-economy. Torricelli found a geometrical solution to this problem around 1645, but it still had no direct numerical solution more than 325 years later. E. Weiszfeld published a paper in 1937 with an algorithm for the Fermat-Weber problem. As the paper was published in Tohoku Mathematical journal, and Weiszfeld immigrated to USA and changed his name to Vaszoni, his work was not widely known. [1] Kuhn and Kuenne [2] independently found a similar iterative solution for the general Fermat problem in 1962, and, in 1972, Tellier [3] found a direct numerical solution to the Fermat triangle problem, which is trigonometric. Kuhn and Kuenne's solution applies to the case of polygons having more than three sides, which is not the case with Tellier's solution for reasons explained further on.
The Weber problem consists, in the triangle case, in locating a point D with respect to three points A, B, C in such a way that the sum of the transportation costs between D and each of the three other points is minimized. The Weber problem is a generalization of the Fermat problem since it involves both equal and unequal attractive forces (see below), while the Fermat problem only deals with equal attractive forces. It was first formulated, and solved geometrically in the triangle case, by Thomas Simpson in 1750. [4] It was later popularized by Alfred Weber in 1909. [5] Kuhn and Kuenne's iterative solution found in 1962, and Tellier's solution found in 1972 apply to the Weber triangle problem as well as to the Fermat one. Kuhn and Kuenne's solution applies also to the case of polygons having more than three sides.
In its simplest version, the attraction-repulsion problem consists in locating a point D with respect to three points A1, A2 and R in such a way that the attractive forces exerted by points A1, A2, and the repulsive force exerted by point R cancel each other out as it must do at the optimum. It constitutes a generalization of both the Fermat and Weber problems. It was first formulated and solved, in the triangle case, in 1985 by Luc-Normand Tellier. [6] In 1992, Chen, Hansen, Jaumard and Tuy found a solution to the Tellier problem for the case of polygons having more than three sides.
Evangelista Torricelli’s geometrical solution of the Fermat triangle problem stems from two observations:
It can be proved that the first observation implies that, at the optimum, the angles between the AD, BD, CD straight lines must be equal to 360° / 3 = 120°. Torricelli deduced from that conclusion that:
Simpson's geometrical solution of the so-called "Weber triangle problem" (which was first formulated by Thomas Simpson in 1750) directly derives from Torricelli's solution. Simpson and Weber stressed the fact that, in a total transportation minimization problem, the advantage to get closer to each attraction point A, B or C depends on what is carried and on its transportation cost. Consequently, the advantage of getting one kilometer closer to A, B or C varies, and the ∠ADB, ∠ADC, ∠BDC angles no more need to be equal to 120°.
Simpson demonstrated that, in the same way as, in the Fermat triangle problem case, the constructed triangles △ABE, △ACF, △BCG were equilateral because the three attractive forces were equal, in the Weber triangle problem case, the constructed triangles △ABE, △ACF, △BCG, where E, F, G are located outside the △ABC triangle, must be proportional to the attractive forces of the location system.
The solution is such that:
A third triangle of forces △ACF, where F is located outside the △ABC triangle, can be drawn based on the AC side, and a third circumference can be traced round that triangle. That third circumference crosses the two previous ones at the same point D.
A geometrical solution exists for the attraction-repulsion triangle problem. Its discovery is rather recent. [7] That geometrical solution differs from the two previous ones since, in this case, the two constructed force triangles overlap the △A1A2R location triangle (where A1 and A2 are attraction points, and R, a repulsion one), while, in the preceding cases, they never did.
This solution is such that:
This solution is useless if one of the forces is greater than the sum of the two other ones or if the angles are not compatible. In some cases, no force is larger than the two other ones, and the angles are not compatible; then, the optimal location lies at the point that exerts the greater attractive force.
More than 332 years separate the first formulation of the Fermat triangle problem and the discovery of its non-iterative numerical solution, while a geometrical solution existed for almost all that period of time. Is there an explanation for that? That explanation lies in the possibility of the origins of the three vectors oriented towards the three attraction points not coinciding. If those origins do coincide and lie at the optimum location P, the vectors oriented towards A, B, C, and the sides of the △ABC location triangle form the six angles ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, and the three vectors form the ∠αA, ∠αB, ∠αC angles. It is easy to write the following six equations linking six unknowns (the angles ∠1, ∠2, ∠3, ∠4, ∠5, ∠6) with six known values (angles ∠A, ∠B, ∠C, whose values are given, and angles ∠αA, ∠αB, ∠αC, whose values depend only on the relative magnitude of the three attractive forces pointing towards the A, B, C attraction points):
Unfortunately, this system of six simultaneous equations with six unknowns is undetermined, and the possibility of the origins of the three vectors oriented towards the three attraction points not coinciding explains why. In the case of non-coincidence, we observe that all the six equations are still valid. However, the optimal location P has disappeared because of the triangular hole that exists inside the triangle. In fact, as Tellier (1972) [8] has shown, that triangular hole had exactly the same proportions as the "forces triangles" we drew in Simpson's geometrical solution.
In order to solve the problem, we must add to the six simultaneous equations a seventh requirement, which states that there should be no triangular hole in the middle of the location triangle. In other words, the origins of the three vectors must coincide.
Tellier's solution of the Fermat and Weber triangle problems involves three steps:
Tellier (1985) [9] extended the Fermat–Weber problem to the case of repulsive forces. Let us examine the triangle case where there are two attractive forces wA1, wA2, and one repulsive force wR. Here as in the previous case, the possibility exists for the origins of the three vectors not to coincide. So the solution must require their coinciding. Tellier's trigonometric solution of this problem is the following:
When the number of forces is larger than three, it is no longer possible to determine the angles separating the various forces without taking into account the geometry of the location polygon. Geometric and trigonometric methods are then powerless. Iterative optimizing methods are used in such cases. Kuhn and Kuenne (1962) [10] suggested an algorithm based on iteratively reweighted least squares generalizing Weiszfeld's algorithm for the unweighted problem. Their method is valid for the Fermat and Weber problems involving many forces, but not for the attraction–repulsion problem. In this method, to find an approximation to the point y minimizing the weighted sum of distances
an initial approximation to the solution y0 is found, and then at each stage of the algorithm is moved closer to the optimal solution by setting yj + 1 to be the point minimizing the sum of weighted squared distances
where the initial weights wi of the input points are divided by the distances from each point to the approximation from the previous stage. As the unique optimal solution to a weighted least squares problem, each successive approximation may be found as a weighted average:
The Varignon frame provides an experimental solution of the Weber problem.
For the attraction–repulsion problem one has instead to resort to the algorithm proposed by Chen, Hansen, Jaumard and Tuy (1992). [11]
In the world of spatial economics, repulsive forces are omnipresent. Land values are the main illustration of them. In fact a substantial portion of land value theory, both rural and urban, can be summed up in the following way.
In the case where everybody is attracted by a single attraction point (the rural market or the urban central business district), competition between the various bidders who all want to locate at the center will generate land values that will transform the unique attraction point of the system into a repulsion point from the land value point of view, and, at the equilibrium, each inhabitant and activity will be located at the point where the attractive and the repulsive forces exerted by the center on them will cancel out.
The Tellier problem preceded the emergence of the New Economic Geography. It is seen by Ottaviano and Thisse (2005) [12] as a prelude to the New Economic Geography (NEG) that developed in the 1990s, and earned Paul Krugman a Nobel Memorial Prize in Economic Sciences in 2008. The concept of attractive force is akin to the NEG concept of agglomeration or centripetal force, and the concept of repulsive force is akin to the NEG concept of dispersal or centrifugal force.
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.
A right triangle or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle, is a triangle in which one angle is a right angle, i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.
Carl David Alfred Weber was a German economist, geographer, sociologist and theoretician of culture whose work was influential in the development of modern economic geography.
In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices.
In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.
Prosthaphaeresis was an algorithm used in the late 16th century and early 17th century for approximate multiplication and division using formulas from trigonometry. For the 25 years preceding the invention of the logarithm in 1614, it was the only known generally applicable way of approximating products quickly. Its name comes from the Greek prosthesis (πρόσθεσις) and aphaeresis (ἀφαίρεσις), meaning addition and subtraction, two steps in the process.
In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.
In mathematics and statistics, a circular mean or angular mean is a mean designed for angles and similar cyclic quantities, such as times of day, and fractional parts of real numbers.
Morrie's law is a special trigonometric identity. Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:
Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The Snellius–Pothenot problem is a problem in planar surveying. Given three known points A, B and C, an observer at an unknown point P observes that the segment AC subtends an angle and the segment CB subtends an angle ; the problem is to determine the position of the point P..
The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.
Luc-Normand Tellier is a Professor Emeritus in spatial economics of the University of Quebec at Montreal.