Wetting layer

Last updated

A wetting layer is an monolayer of atoms that is epitaxially grown on a flat surface. The atoms forming the wetting layer can be semimetallic elements/compounds or metallic alloys (for thin films). Wetting layers form when depositing a lattice-mismatched material on a crystalline substrate. This article refers to the wetting layer connected to the growth of self-assembled quantum dots (e.g. InAs on GaAs). These quantum dots form on top of the wetting layer. The wetting layer can influence the states of the quantum dot for applications in quantum information processing and quantum computation.

Contents

Process

The wetting layer is epitaxially grown on a surface using molecular beam epitaxy (MBE). The temperatures required for wetting layer growth typically range from 400-500 degrees Celsius. When a material A is deposited on a surface of a lattice-mismatched material B, the first atomic layer of material A often adopts the lattice constant of B. This mono-layer of material A is called the wetting layer. When the thickness of layer A increases further, it becomes energetically unfavorable for material A to keep the lattice constant of B. Due to the high strain of layer A, additional atoms group together once a certain critical thickness of layer A is reached. This island formation reduces the elastic energy. [1] Overgrown with material B, the wetting layer forms a quantum well in case material A has a lower bandgap than B. In this case, the formed islands are quantum dots. Further annealing can be used to modify the physical properties of the wetting layer/quantum dot [2] .

Properties

The wetting layer is a close-to mono-atomic layer with a thickness of typically 0.5 nanometers. The electronic properties of the quantum dot can change as a result of the wetting layer. [3] [4] [5] Also, the strain of the quantum dot can change due to the wetting layer. [6]

Notes

  1. Lee, S.; Lazarenkova, O.; Von Allmen, P.; Oyafuso, F.; Klimeck, G. (2004). "Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots". Physical Review B. 70 (12). arXiv: cond-mat/0405019 . Bibcode:2004PhRvB..70l5307L. doi:10.1103/PhysRevB.70.125307.
  2. Sanguinetti, S.; Mano, T.; Gerosa, A.; Somaschini, C.; Bietti, S.; Koguchi, N.; Grilli, E.; Guzzi, M.; Gurioli, M.; Abbarchi, M. (2008). "Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures". Journal of Applied Physics. 104 (11): 113519. doi:10.1063/1.3039802. ISSN   0021-8979.
  3. Lee, Seungwon; Lazarenkova, Olga L.; von Allmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard (2004). "Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots". Physical Review B. 70 (12). arXiv: cond-mat/0405019 . doi:10.1103/PhysRevB.70.125307. ISSN   1098-0121.
  4. Karrai, Khaled; Warburton, Richard J.; Schulhauser, Christian; Högele, Alexander; Urbaszek, Bernhard; McGhee, Ewan J.; Govorov, Alexander O.; Garcia, Jorge M.; Gerardot, Brian D.; Petroff, Pierre M. (2004). "Hybridization of electronic states in quantum dots through photon emission". Nature. 427 (6970): 135–138. doi:10.1038/nature02109. ISSN   0028-0836.
  5. Shahzadeh, Mohammadreza; Sabaeian, Mohammad (2014). "The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots". AIP Advances. 4 (6): 067113. doi: 10.1063/1.4881980 . ISSN   2158-3226.
  6. Sun, Chao; Lu, Pengfei; Yu, Zhongyuan; Cao, Huawei; Zhang, Lidong (2012). "Wetting layers effect on InAs/GaAs quantum dots". Physica B: Condensed Matter. 407 (22): 4440–4445. doi:10.1016/j.physb.2012.07.039. ISSN   0921-4526.

Related Research Articles

Molecular-beam epitaxy Crystal growth process

Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the development of nanotechnologies. MBE is used to fabricate diodes and MOSFETs at microwave frequencies, and to manufacture the lasers used to read optical discs.

Gallium nitride

Gallium nitride (GaN) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic, high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without use of nonlinear optical frequency-doubling.

Quantum dot Zero-dimensional, nano-scale semiconductor particles with novel optical and electronic properties

Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from larger particles due to quantum mechanics. They are a central topic in nanotechnology. When the quantum dots are illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy by the emission of light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band.

Quantum well

A quantum well is a potential well with only discrete energy values.

Graphene

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional honeycomb lattice. The name is a portmanteau of "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon consists of stacked graphene layers.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are elements of the periodic table while arsenic is a element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

Chemical beam epitaxy (CBE) forms an important class of deposition techniques for semiconductor layer systems, especially III-V semiconductor systems. This form of epitaxial growth is performed in an ultrahigh vacuum system. The reactants are in the form of molecular beams of reactive gases, typically as the hydride or a metalorganic. The term CBE is often used interchangeably with metal-organic molecular beam epitaxy (MOMBE). The nomenclature does differentiate between the two processes, however. When used in the strictest sense, CBE refers to the technique in which both components are obtained from gaseous sources, while MOMBE refers to the technique in which the group III component is obtained from a gaseous source and the group V component from a solid source.

Strain engineering refers to a general strategy employed in semiconductor manufacturing to enhance device performance. Performance benefits are achieved by modulating strain in the transistor channel, which enhances electron mobility and thereby conductivity through the channel.

Gallium manganese arsenide, chemical formula (Ga,Mn)As is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide,, and readily compatible with existing semiconductor technologies. Differently from other dilute magnetic semiconductors, such as the majority of those based on II-VI semiconductors, it is not paramagnetic but ferromagnetic, and hence exhibits hysteretic magnetization behavior. This memory effect is of importance for the creation of persistent devices. In (Ga,Mn)As, the manganese atoms provide a magnetic moment, and each also acts as an acceptor, making it a p-type material. The presence of carriers allows the material to be used for spin-polarized currents. In contrast, many other ferromagnetic magnetic semiconductors are strongly insulating and so do not possess free carriers. (Ga,Mn)As is therefore a candidate as a spintronic material.

Stranski–Krastanov growth is one of the three primary modes by which thin films grow epitaxially at a crystal surface or interface. Also known as 'layer-plus-island growth', the SK mode follows a two step process: initially, complete films of adsorbates, up to several monolayers thick, grow in a layer-by-layer fashion on a crystal substrate. Beyond a critical layer thickness, which depends on strain and the chemical potential of the deposited film, growth continues through the nucleation and coalescence of adsorbate 'islands'. This growth mechanism was first noted by Ivan Stranski and Lyubomir Krastanov in 1938. It wasn’t until 1958 however, in a seminal work by Ernst Bauer published in Zeitschrift für Kristallographie, that the SK, Volmer–Weber, and Frank–van der Merwe mechanisms were systematically classified as the primary thin-film growth processes. Since then, SK growth has been the subject of intense investigation, not only to better understand the complex thermodynamics and kinetics at the core of thin-film formation, but also as a route to fabricating novel nanostructures for application in the microelectronics industry.

Selective area epitaxy is the local growth of epitaxial layer through a patterned amorphous dielectric mask (typically SiO2 or Si3N4) deposited on a semiconductor substrate. Semiconductor growth conditions are selected to ensure epitaxial growth on the exposed substrate, but not on the dielectric mask. SAE can be executed in various epitaxial growth methods such as molecular beam epitaxy (MBE), metalorganic vapour phase epitaxy (MOVPE) and chemical beam epitaxy (CBE). By SAE, semiconductor nanostructures such as quantum dots and nanowires can be grown to their designed places.

Topological insulator State of matter with insulating bulk but conductive boundary

A topological insulator is a material that behaves as an insulator in its interior but whose surface contains conducting states, meaning that electrons can only move along the surface of the material. Topological insulators have non-trivial symmetry-protected topological order; however, having a conducting surface is not unique to topological insulators, since ordinary band insulators can also support conductive surface states. What is special about topological insulators is that their surface states are symmetry-protected Dirac fermions by particle number conservation and time-reversal symmetry. In two-dimensional (2D) systems, this ordering is analogous to a conventional electron gas subject to a strong external magnetic field causing electronic excitation gap in the sample bulk and metallic conduction at the boundaries or surfaces.

Silicene

Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide.

Valleytronics is an experimental area in semiconductors that exploits local minima ("valleys") in the electronic band structure. Certain semiconductors have multiple "valleys" in the electronic band structure of the first Brillouin zone, and are known as multivalley semiconductors. Valleytronics is the technology of control over the valley degree of freedom, a local maximum/minimum on the valence/conduction band, of such multivalley semiconductors.

Germanene

Germanene is a material made up of a single layer of germanium atoms. The material is created in a process similar to that of silicene and graphene, in which high vacuum and high temperature are used to deposit a layer of germanium atoms on a substrate. High-quality thin films of germanene have revealed unusual two-dimensional structures with novel electronic properties suitable for semiconductor device applications and materials science research.

Band-gap engineering is the process of controlling or altering the band gap of a material. This is typically done to semiconductors by controlling the composition of alloys or constructing layered materials with alternating compositions. A band gap is the range in a solid where no electron state can exist. The band gap of insulators is much larger than in semiconductors. Conductors or metals have a much smaller or nonexistent band gap than semiconductors since the valence and conduction bands overlap. Controlling the band gap allows for the creation of desirable electrical properties.

A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.

History of graphene

Single-layer graphene was explored theoretically by P. R. Wallace in 1947. It was first unambiguously produced and identified in 2004, by the group of Andre Geim and Konstantin Novoselov, though they credit Hanns-Peter Boehm and his co-workers for the experimental discovery of graphene in 1962. Boehm et al. introduced the term graphene in 1986.

Epitaxial graphene growth on silicon carbide (SiC) by thermal decomposition is a method to produce large-scale few-layer graphene (FLG). Graphene is one of the most promising nanomaterials for the future because of its various characteristics, like strong stiffness and high electric and thermal conductivity. Still, reproducible production of Graphene is difficult, thus many different techniques have been developed. The main advantage of epitaxial graphene growth on silicon carbide over other techniques is to obtain graphene layers directly on a semiconducting or semi-insulating substrate which is commercially available.

Plumbene is a material made up of a single layer of lead atoms. The material is created in a process similar to that of graphene, silicene, germanene, and stanene, in which high vacuum and high temperature are used to deposit a layer of lead atoms on a substrate. High-quality thin films of plumbene have revealed two-dimensional honeycomb structures. First researched by Indian scientists, further investigations are being done around the world.