Wheeling (electric power transmission)

Last updated

In electric power transmission, wheeling is the transportation of electric energy (megawatt-hours) from within an electrical grid to an electrical load outside the grid boundaries. In a simpler sense, it refers to the process of transmission of electricity through the transmission lines.

Contents

Two types of wheeling are 1) a wheel-through, where the electrical power generation and the load are both outside the boundaries of the transmission system and 2) a wheel-out, where the generation resource is inside the boundaries of the transmission system but the load is outside. Wheeling often refers to the scheduling of the energy transfer from one balancing authority (cf. Balancing Authority, Tie Facility and Interconnection) to another. Since the wheeling of electric energy requires use of a transmission system, there is often an associated fee which goes to the transmission owners.

Transmission ownership

Under deregulation, many vertically integrated utilities were separated into generation owners, transmission and distribution owners, and retail providers. To recover capital costs, operating costs and earn a return on investment, a transmission revenue requirement (TRR) is established and approved by a national agency (such as the Federal Energy Regulatory Commission in the United States) for each transmission owner. The TRR is paid through transmission access charges (TACs), load-weighted fees charged to internal load and energy exports for use of the transmission facilities. The energy export fee is often referred to as a wheeling charge. When wheeling-through, the transmission access charge only applies to the exported amount.

Wheeling charge

A wheeling charge is a currency per megawatt-hour amount that a transmission owner receives for the use of its system to export energy. The total amount due in TAC fees is determined by the following equation:

Where 'Wc' is wheeling charge per unit. 'Pw' is the power in MW.

The fee associated with wheeling is referred to as a "wheeling charge." This is an amount in $/MWh which transmission owner recovers for the use of its system. If the resource entity must go through multiple [transmission owner]s, it may be charged a wheeling charge for each one. There are many reasons for a wheeling charge. It may be to recover some costs of transmission facilities or congestion. Another motivation would be to keep prices low. For instance, if the electricity prices in Arizona are 30 $/MWh and prices in California are 50 $/MWh, resources in Arizona would want to sell to the California market to make more money. The utilities in Arizona would then be forced to pay 50 $/MWh if they needed these resources. If Arizona charged a wheeling charge of 10 $/MWh, Arizona would only have to pay 40 $/MWh to compete with California. However, Arizona would not want to charge too much, as this could impact the advantages of trading electric energy between systems. In this way, it works similarly to tariffs.

In Tamilnadu, wheeling charges are applicable for the consumer who uses third party power. They charge ₹ 0.2105 Rupees per MW. In Assam, wheeling charges are applicable for the consumer who uses third party power. They charge ₹ 0.26 Rupees per MW

See also

Related Research Articles

<span class="mw-page-title-main">Kilowatt-hour</span> Unit of energy, often used for electrical billing

A kilowatt-hour is a non-SI unit of energy equal to 3.6 megajoules (MJ) in SI units which is the energy delivered by one kilowatt of power for one hour. Kilowatt-hours are a common billing unit for electrical energy supplied by electric utilities. Metric prefixes are used for multiples and submultiples of the basic unit, the watt-hour.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">National Grid (Great Britain)</span> High-voltage electric power transmission network in Great Britain

The National Grid is the high-voltage electric power transmission network serving Great Britain, connecting power stations and major substations, and ensuring that electricity generated anywhere on the grid can be used to satisfy demand elsewhere. The network serves the majority of Great Britain and some of the surrounding islands. It does not cover Northern Ireland, which is part of the Irish single electricity market.

<span class="mw-page-title-main">Manitoba Hydro</span> Electric power and natural gas utility company in Manitoba, Canada

The Manitoba Hydro-Electric Board, operating as Manitoba Hydro, is the electric power and natural gas utility in the province of Manitoba, Canada. Founded in 1961, it is a provincial Crown Corporation, governed by the Manitoba Hydro-Electric Board and the Manitoba Hydro Act. Today the company operates 16 interconnected generating stations. It has more than 527,000 electric power customers and more than 263,000 natural gas customers. Since most of the electrical energy is provided by hydroelectric power, the utility has low electricity rates. Stations in Northern Manitoba are connected by a HVDC system, the Nelson River Bipole, to customers in the south. The internal staff are members of the Canadian Union of Public Employees Local 998 while the outside workers are members of the International Brotherhood of Electrical Workers Local 2034.

<span class="mw-page-title-main">Grid energy storage</span> Large scale electricity supply management

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

<span class="mw-page-title-main">Peaking power plant</span> Reserved for high demand times

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.

<span class="mw-page-title-main">Electricity sector in Canada</span>

The electricity sector in Canada has played a significant role in the economic and political life of the country since the late 19th century. The sector is organized along provincial and territorial lines. In a majority of provinces, large government-owned integrated public utilities play a leading role in the generation, transmission, and distribution of electricity. Ontario and Alberta have created electricity markets in the last decade to increase investment and competition in this sector of the economy.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

<span class="mw-page-title-main">Moss Landing Power Plant</span> Natural gas-fired power station in Moss Landing, California

The Moss Landing Power Plant is a natural gas powered electricity generation plant located in Moss Landing, California, United States, at the midpoint of Monterey Bay. Its large stacks are landmarks, visible throughout the Monterey Bay Area. The plant is owned and operated by Houston-based Dynegy and currently has a generation capacity of 1020 MW (net) from its two combined cycle generation units. It was once the largest power plant in the state of California, with a generation capacity of 2560 MW, before its two large supercritical steam units were retired in 2016.

<span class="mw-page-title-main">Capacity factor</span> Electrical production measure

The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind or the sun. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of electricity production.

Through the 1996 Electric Utilities Act the Alberta's deregulated electricity market began.

<span class="mw-page-title-main">PJM Interconnection</span> Major electric grid coordinator in northeastern USA

PJM Interconnection LLC (PJM) is a regional transmission organization (RTO) in the United States. It is part of the Eastern Interconnection grid operating an electric transmission system serving all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District of Columbia.

The watt is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution.

<span class="mw-page-title-main">Solar power in California</span>

Solar power has been growing rapidly in the U.S. state of California because of high insolation, community support, declining solar costs, and a renewable portfolio standard which requires that 60% of California's electricity come from renewable resources by 2030, with 100% by 2045. Much of this is expected to come from solar power via photovoltaic facilities or concentrated solar power facilities.

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

<span class="mw-page-title-main">Net metering in the United States</span>

Net metering is a policy by many states in the United States designed to help the adoption of renewable energy. Net metering was pioneered in the United States as a way to allow solar and wind to provide electricity whenever available and allow use of that electricity whenever it was needed, beginning with utilities in Idaho in 1980, and in Arizona in 1981. In 1983, Minnesota passed the first state net metering law. As of March 2015, 44 states and Washington, D.C. have developed mandatory net metering rules for at least some utilities. However, although the states' rules are clear, few utilities actually compensate at full retail rates.

<span class="mw-page-title-main">Energy in California</span> Overview of the use of energy in California, U.S.

Energy in California is a major area of the economy of California. California is the state with the largest population and the largest economy in the United States. It is second in energy consumption after Texas. As of 2018, per capita consumption was the fourth-lowest in the United States partially because of the mild climate and energy efficiency programs.

<span class="mw-page-title-main">Tesla Powerpack</span> Large-scale battery energy storage product manufactured by Tesla Energy

The Tesla Powerpack was a rechargeable lithium-ion battery stationary energy storage product, intended for use by businesses or on smaller projects from power utilities. The device was manufactured by Tesla Energy, the clean energy subsidiary of Tesla, Inc. The Powerpack stores electricity for time of use load shifting, backup power, demand response, microgrids, renewable energy integration, frequency regulation, and voltage control. The first prototype Powerpacks were installed in 2012 at the locations of a few industrial customers. After July 22, 2022, the product was no longer listed for sale.

<span class="mw-page-title-main">Electricity sector in the Philippines</span> Overview of the electricity sector in the Philippines

The electricity sector in the Philippines provides electricity through power generation, transmission, and distribution to many parts of the country. The Philippines is divided into three electrical grids, one each for Luzon, the Visayas and Mindanao. As of June 2016, the total installed capacity in the Philippines was 20,055 megawatts (MW), of which 14,348 MW was on the Luzon grid. As of June, 2016, the all-time peak demand on Luzon was 9,726 MW at 2:00 P.M. on May 2, 2016; on Visayas was 1,878 MW at 2:00 P.M. on May 11, 2016; and on Mindanao was 1,593 MW at 1:35 P.M. on June 8, 2016. However, about 12% of Filipinos have no access to electricity. The Philippines is also one of the countries in the world that has a fully functioning electricity market since 2006 called the Philippine Wholesale Electricity Spot Market(WESM) and is operated by an independent market operator.

Power system operations is a term used in electricity generation to describe the process of decision-making on the timescale from one day to minutes prior to the power delivery. The term power system control describes actions taken in response to unplanned disturbances in order to provide reliable electric supply of acceptable quality. The corresponding engineering branch is called Power System Operations and Control. Electricity is hard to store, so at any moment the supply (generation) shall be balanced with demand. In an electrical grid the task of real-time balancing is performed by a regional-based control center, run by an electric utility in the traditional electricity market. In the restructured North American power transmission grid, these centers belong to balancing authorities numbered 74 in 2016, the entities responsible for operations are also called independent system operators, transmission system operators. The other form of balancing resources of multiple power plants is a power pool. The balancing authorities are overseen by reliability coordinators.

References