Wiegand interface

Last updated

The Wiegand interface is a de facto wiring standard which arose from the popularity of Wiegand effect card readers in the 1980s. It is commonly used to connect a card swipe mechanism to the rest of an access control system. The sensor in such a system is often a "Wiegand wire", based on the Wiegand effect, discovered by John R. Wiegand. A Wiegand-compatible reader is normally connected to a Wiegand-compatible security panel.

Contents

Physical layer

The Wiegand interface uses three wires, one of which is a common ground and two of which are data transmission wires usually called DATA0 and DATA1, alternatively labeled "D0" and "D1" or "Data Low" and "Data High". [1] When no data is being sent, both DATA0 and DATA1 are pulled up to the "high" voltage level — usually +5 VDC. When a 0 is sent the DATA0 wire is pulled to a low voltage while the DATA1 wire stays at a high voltage. When a 1 is sent the DATA1 wire is pulled to a low voltage while DATA0 stays at a high voltage. [2]

The high signaling level of 5 VDC is used to accommodate long cable runs from card readers to the associated access control panel, typically located in a secure closet. Most card reader manufacturers publish a maximum cable run of 500 feet (150 m). An advantage of the Wiegand signalling format is that it allows very long cable runs, far longer than other interface standards of its day allowed.

Protocol

The communications protocol used on a Wiegand interface is known as the Wiegand protocol. The original Wiegand format had one parity bit, 8 bits of facility code, 16 bits of ID code, and a trailing parity bit for a total of 26 bits. The first parity bit is calculated from the first 12 bits of the code and the trailing parity bit from the last 12 bits. [3] However, many inconsistent implementations and extensions to the basic format exist.

Many access control system manufacturers adopted Wiegand technology, but were unhappy with the limitations of only 8 bits for site codes (0-255) and 16 bits for card numbers (0-65535), so they designed their own formats with varying complexity of field numbers and lengths and parity checking. [4]

The physical size limitations of the card dictated that a maximum of 37 Wiegand wire filaments could be placed in a standard credit card, as dictated by CR80 or ISO/IEC 7810 standards, before misreads would affect reliability. Therefore, most Wiegand formats used in physical access control are less than 37 bits in length.

See also

Related Research Articles

<span class="mw-page-title-main">Universal asynchronous receiver-transmitter</span> Computer hardware device

A universal asynchronous receiver-transmitter is a computer hardware device for asynchronous serial communication in which the data format and transmission speeds are configurable. It sends data bits one by one, from the least significant to the most significant, framed by start and stop bits so that precise timing is handled by the communication channel. The electric signaling levels are handled by a driver circuit external to the UART. Two common signal levels are RS-232, a 12-volt system, and RS-485, a 5-volt system. Early teletypewriters used current loops.

<span class="mw-page-title-main">Serial port</span> Communication interface transmitting information sequentially

In computing, a serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

<span class="mw-page-title-main">IEEE-488</span> General Purpose Interface Bus (GPIB) specification

IEEE 488 is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard as HP-IB. It subsequently became the subject of several standards, and is generically known as GPIB.

Asynchronous serial communication is a form of serial communication in which the communicating endpoints' interfaces are not continuously synchronized by a common clock signal. Instead of a common synchronization signal, the data stream contains synchronization information in form of start and stop signals, before and after each unit of transmission, respectively. The start signal prepares the receiver for arrival of data and the stop signal resets its state to enable triggering of a new sequence.

A Controller Area Network is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted serially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are received by all devices, including by the transmitting device.

<span class="mw-page-title-main">Proximity card</span> Contactless smart card

A proximity card or prox card also known as a key card or keycard is a contactless smart card which can be read without inserting it into a reader device, as required by earlier magnetic stripe cards such as credit cards and contact type smart cards. The proximity cards are part of the contactless card technologies. Held near an electronic reader for a moment they enable the identification of an encoded number. The reader usually produces a beep or other sound to indicate the card has been read.

Throughput of a network can be measured using various tools available on different platforms. This page explains the theory behind what these tools set out to measure and the issues regarding these measurements.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

ARINC 429, "Mark33 Digital Information Transfer System (DITS)," is also known as the Aeronautical Radio INC. (ARINC) technical standard for the predominant avionics data bus used on most higher-end commercial and transport aircraft. It defines the physical and electrical interfaces of a two-wire data bus and a data protocol to support an aircraft's avionics local area network.

<span class="mw-page-title-main">IEEE 1355</span>

IEEE Standard 1355-1995, IEC 14575, or ISO 14575 is a data communications standard for Heterogeneous Interconnect (HIC).

<span class="mw-page-title-main">Parallel SCSI</span>

Parallel SCSI is the earliest of the interface implementations in the SCSI family. SPI is a parallel bus; there is one set of electrical connections stretching from one end of the SCSI bus to the other. A SCSI device attaches to the bus but does not interrupt it. Both ends of the bus must be terminated.

A card reader is a data input device that reads data from a card-shaped storage medium. The first were punched card readers, which read the paper or cardboard punched cards that were used during the first several decades of the computer industry to store information and programs for computer systems. Modern card readers are electronic devices that can read plastic cards embedded with either a barcode, magnetic strip, computer chip or another storage medium.

Digital Serial Interface (DSI) is a protocol for the controlling of lighting in buildings. It was created in 1991 by Austrian company Tridonic and is based on Manchester-coded 8-bit protocol, data rate of 1200 baud, 1 start bit, 8 data bits, 4 stop bits, and is the basis of the more sophisticated protocol Digital Addressable Lighting Interface (DALI).

A keycard lock is a lock operated by a keycard, a flat, rectangular plastic card. The card typically, but not always, has identical dimensions to that of a credit card or American and EU driver's license. The card stores a physical or digital pattern that the door mechanism accepts before disengaging the lock.

<span class="mw-page-title-main">Access badge</span>

An access badge is a credential used to gain entry to an area having automated access control entry points. Entry points may be doors, turnstiles, parking gates or other barriers.

An Answer To Reset (ATR) is a message output by a contact Smart Card conforming to ISO/IEC 7816 standards, following electrical reset of the card's chip by a card reader. The ATR conveys information about the communication parameters proposed by the card, and the card's nature and state.

<span class="mw-page-title-main">Wiegand effect</span>

The Wiegand effect is a nonlinear magnetic effect, named after its discoverer John R. Wiegand, produced in specially annealed and hardened wire called Wiegand wire.

<span class="mw-page-title-main">IEEE 1394</span> Serial bus interface standard, also known as Firewire

IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. Apple called the interface FireWire. It is also known by the brand names i.LINK (Sony), and Lynx.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA, Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses with which they cannot communicate natively, such as IEEE 1394, USB, SCSI, NVMe and Thunderbolt.

<span class="mw-page-title-main">Digital card</span> Virtual online representation of a plastic card

The term digital card can refer to a physical item, such as a memory card on a camera, or, increasingly since 2017, to the digital content hosted as a virtual card or cloud card, as a digital virtual representation of a physical card. They share a common purpose: Identity Management, Credit card, or Debit card. A non-physical digital card, unlike a Magnetic stripe card can emulate (imitate) any kind of card. Other common uses include loyalty card and health insurance card; physical driver's license and Social Security card are still mandated by some government agencies.

References

  1. "Wiegand Interface". Techopedia. Retrieved 2019-09-26.
  2. "Micro RWD EM4001 "Mag swipe" Decimal Output Version Data Sheet" (PDF). ib technology. 5 March 2005. Retrieved 8 February 2021.
  3. "Understanding Card Data Formats - Technology Basics White Paper" (PDF). HID Technology. 2006. Retrieved 14 February 2023.
  4. "What Is Wiegand? A Brief History". Keri Systems. Retrieved 8 February 2021.