Wilkinson power divider

Last updated
Power divider in microstrip technology Wilkinson-coupler.svg
Power divider in microstrip technology

In the field of microwave engineering and circuit design, the Wilkinson Power Divider is a specific class of power divider circuit that can achieve isolation between the output ports while maintaining a matched condition on all ports. The Wilkinson design can also be used as a power combiner because it is made up of passive components and hence is reciprocal. First published by Ernest J. Wilkinson in 1960, [1] this circuit finds wide use in radio frequency communication systems utilizing multiple channels since the high degree of isolation between the output ports prevents crosstalk between the individual channels.

Contents

It uses quarter wave transformers, which can be easily fabricated as quarter wave lines on printed circuit boards. It is also possible to use other forms of transmission line (e.g. coaxial cable) or lumped circuit elements (inductors and capacitors). [2]

Theory

Picture shows a typical output expected from a Wilkinson power divider. The
S
21
,
S
31
{\displaystyle S_{21},S_{31}}
are almost -3 dB, and the
S
11
{\displaystyle S_{11}}
is low near the design frequency. Simulation result of a Wilkinson Power Divider (WPD).jpg
Picture shows a typical output expected from a Wilkinson power divider. The are almost -3 dB, and the is low near the design frequency.
Picture demonstrates a very high isolation between output ports (port 2 & 3) of a Wilkinson power divider WPD2.jpg
Picture demonstrates a very high isolation between output ports (port 2 & 3) of a Wilkinson power divider

The scattering parameters for the common case of a 2-way equal-split Wilkinson power divider at the design frequency is given by [3]

Inspection of the S matrix reveals that the network is reciprocal (), that the terminals are matched (), that the output terminals are isolated (=0), and that equal power division is achieved (). The non-unitary matrix results from the fact that the network is lossy. An ideal Wilkinson divider would yield .

Network theorem governs that a divider cannot satisfy all three conditions (being matched, reciprocal and loss-less) at the same time. Wilkinson divider satisfies the first two (matched and reciprocal), and cannot satisfy the last one (being loss-less). Hence, there is some loss occurring in the network.

No loss occurs when the signals at ports 2 and 3 are in phase and have equal magnitude. In case of noise input to ports 2 and 3, the noise level at port 1 does not increase, half of the noise power is dissipated in the resistor.

By cascading, the input power might be divided to any -number of outputs.


Unequal/Asymmetric Division Through Wilkinson Divider

If the arms for port 2 and 3 are connected with un-equal impedances, then asymmetric division of power can be achieved. When characteristic impedance is , and one wants to split power as and , and , then the design can be created following the equations:

A new constant is defined for ease of expression, where

Impedances are different in two branches to achieve unequal splitting of power. The output impedances of the two branches are also different. Unequal Wilkinson.png
Impedances are different in two branches to achieve unequal splitting of power. The output impedances of the two branches are also different.

Then the design guideline is [4] :




The equal-splitting Wilkinson Divider is obtained for .

See also

Related Research Articles

<span class="mw-page-title-main">Characteristic impedance</span> Property of an electrical circuit

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in the other direction. Equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

<span class="mw-page-title-main">Circulator</span> Electronic circuit in which a signal entering any port exits at the next port

In electrical engineering, a circulator is a passive, non-reciprocal three- or four-port device that only allows a microwave or radio-frequency (RF) signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where an external waveguide or transmission line, such as a microstrip line or a coaxial cable, connects to the device. For a three-port circulator, a signal applied to port 1 only comes out of port 2; a signal applied to port 2 only comes out of port 3; a signal applied to port 3 only comes out of port 1. An ideal three-port circulator thus has the following scattering matrix:

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Gyrator</span> Two-port non-reciprocal network element

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

<span class="mw-page-title-main">Two-port network</span> Electric circuit with two pairs of terminals

In electronics, a two-port network is an electrical network or device with two pairs of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the current entering one terminal must equal the current emerging from the other terminal on the same port. The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port.

Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

<span class="mw-page-title-main">Attenuator (electronics)</span> Type of electronic component

An attenuator is a passive broadband electronic device that reduces the power of a signal without appreciably distorting its waveform.

<span class="mw-page-title-main">Power dividers and directional couplers</span> Radio technology devices

Power dividers and directional couplers are passive devices used mostly in the field of radio technology. They couple a defined amount of the electromagnetic power in a transmission line to a port enabling the signal to be used in another circuit. An essential feature of directional couplers is that they only couple power flowing in one direction. Power entering the output port is coupled to the isolated port but not to the coupled port. A directional coupler designed to split power equally between two ports is called a hybrid coupler.

Admittance parameters or Y-parameters are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Z-parameters, H-parameters, T-parameters or ABCD-parameters.

Impedance parameters or Z-parameters are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.

Image impedance is a concept used in electronic network design and analysis and most especially in filter design. The term image impedance applies to the impedance seen looking into a port of a network. Usually a two-port network is implied but the concept can be extended to networks with more than two ports. The definition of image impedance for a two-port network is the impedance, Zi 1, seen looking into port 1 when port 2 is terminated with the image impedance, Zi 2, for port 2. In general, the image impedances of ports 1 and 2 will not be equal unless the network is symmetrical with respect to the ports.

Constant k filters, also k-type filters, are a type of electronic filter designed using the image method. They are the original and simplest filters produced by this methodology and consist of a ladder network of identical sections of passive components. Historically, they are the first filters that could approach the ideal filter frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are rarely considered for a modern design, the principles behind them having been superseded by other methodologies which are more accurate in their prediction of filter response.

<span class="mw-page-title-main">Rat-race coupler</span> Type of radio-frequency coupler

A rat-race coupler, also known as a hybrid ring coupler, is a type of coupler used in RF and microwave systems. In its simplest form, it is a 3 dB coupler and is thus an alternative to a magic tee. Compared to the magic tee, it has the advantage of being easy to realize in planar technologies such as microstrip and stripline, although waveguide rat races are also practical. Unlike magic tees, a rat-race needs no matching structure to achieve correct operation.

An antimetric electrical network is an electrical network that exhibits anti-symmetrical electrical properties. The term is often encountered in filter theory, but it applies to general electrical network analysis. Antimetric is the diametrical opposite of symmetric; it does not merely mean "asymmetric". It is possible for networks to be symmetric or antimetric in their electrical properties without being physically or topologically symmetric or antimetric.

The coupling coefficient of resonators is a dimensionless value that characterizes interaction of two resonators. Coupling coefficients are used in resonator filter theory. Resonators may be both electromagnetic and acoustic. Coupling coefficients together with resonant frequencies and external quality factors of resonators are the generalized parameters of filters. In order to adjust the frequency response of the filter it is sufficient to optimize only these generalized parameters.

In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. The matrix relates the outputs of the system to its inputs. It is a particularly useful construction for linear time-invariant (LTI) systems because it can be expressed in terms of the s-plane.

<span class="mw-page-title-main">Performance and modelling of AC transmission</span>

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first. The reciprocity theorem is valid for almost all passive networks. The reciprocity theorem is a feature of a more general principle of reciprocity in electromagnetism.

References

  1. E.J. Wilkinson, "An N-way Power Divider", IRE Trans. on Microwave Theory and Techniques, vol. 8, p. 116-118, Jan. 1960, doi: 10.1109/TMTT.1960.1124668
  2. "Overview and essentials of the Wilkinson divider splitter combiner". Radio-electronics.com. Retrieved 6 February 2013.
  3. D.M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons: New York, 2005
  4. D.M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons: New York, 2005