Working landscape

Last updated
Example of a working landscape in Canada. Pheasant Creek aerial.jpg
Example of a working landscape in Canada.

Working landscapes are landscapes used for farming, ranching and/or forestry. [1] Recently, these have become the focus of efforts to conserve biodiversity, [2] as these now cover more than 80% of Earth's land, [3] and therefore offer increasing opportunities for conservation and restoration. Though some parts of these landscapes may be used so intensively that they may be unable to sustain native species, working landscapes generally also include significant areas of habitats suitable for native species within their diverse and multifunctional mosaics of intensively used, fallow, and regenerating areas.

Contents

Working landscapes are critical to sustain biodiversity

Example of habitat strips for wildlife management in working landscapes in England. Farmland, Compton - geograph.org.uk - 526056.jpg
Example of habitat strips for wildlife management in working landscapes in England.

Conventional protected areas can offer high quality habitats with strong protections for native species, but their total global extent will always be limited. As landscapes without human inhabitation and use are already rare and only getting rarer, conservation in working landscapes has become increasingly critical to the future of biodiversity. [1] For example, the conservation of 20% of working landscape area for native habitats has been proposed as a global conservation target, [2] and is only one among many strategies for conservation beyond protected areas that falls under the rubric of Other effective area-based conservation measures. Satellite mapping has been increasingly deployed to monitor how human activities modify working landscapes over time across extensive regions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem levels. Biodiversity is not distributed evenly on Earth; it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than 10% of Earth's terrestrial surface and contain about 50% of the world's species. There are latitudinal gradients in species diversity for both marine and terrestrial taxa. Marine coastal biodiversity is highest globally speaking in the Western Pacific ocean steered mainly by the higher surface temperatures. In all oceans across the planet, marine species diversity peaks in the mid-latitudinal zones. Terrestrial species threatened with mass extinction can be observed in exceptionally dense regional biodiversity hotspots, with high levels of species endemism under threat. There are 36 such hotspot regions which require the world's attention in order to secure global biodiversity.

<span class="mw-page-title-main">Edge effects</span> Ecological concept

In ecology, edge effects are changes in population or community structures that occur at the boundary of two or more habitats. Areas with small habitat fragments exhibit especially pronounced edge effects that may extend throughout the range. As the edge effects increase, the boundary habitat allows for greater biodiversity.

<span class="mw-page-title-main">Grassland</span> Area with vegetation dominated by grasses

A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Landscape ecology</span> Science of relationships between ecological processes in the environment and particular ecosystems

Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy. Concisely, landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Agricultural biodiversity</span> Agricultural concept

Agricultural biodiversity or agrobiodiversity is a subset of general biodiversity pertaining to agriculture. It can be defined as "the variety and variability of animals, plants and micro-organisms at the genetic, species and ecosystem levels that sustain the ecosystem structures, functions and processes in and around production systems, and that provide food and non-food agricultural products.” It is managed by farmers, pastoralists, fishers and forest dwellers, agrobiodiversity provides stability, adaptability and resilience and constitutes a key element of the livelihood strategies of rural communities throughout the world. Agrobiodiversity is central to sustainable food systems and sustainable diets. The use of agricultural biodiversity can contribute to food security, nutrition security, and livelihood security, and it is critical for climate adaptation and climate mitigation.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Habitat destruction</span> Process by which a natural habitat becomes incapable of supporting its native species

Habitat destruction occurs when a natural habitat is no longer able to support its native species. The organisms once living there have either moved to elsewhere or are dead, leading to a decrease in biodiversity and species numbers. Habitat destruction is in fact the leading cause of biodiversity loss and species extinction worldwide.

<span class="mw-page-title-main">Wildlife conservation</span> Practice of protecting wild plant and animal species and their habitats

Wildlife conservation refers to the practice of protecting wild species and their habitats in order to maintain healthy wildlife species or populations and to restore, protect or enhance natural ecosystems. Major threats to wildlife include habitat destruction, degradation, fragmentation, overexploitation, poaching, pollution, climate change, and the illegal wildlife trade. The IUCN estimates that 42,100 species of the ones assessed are at risk for extinction. Expanding to all existing species, a 2019 UN report on biodiversity put this estimate even higher at a million species. It is also being acknowledged that an increasing number of ecosystems on Earth containing endangered species are disappearing. To address these issues, there have been both national and international governmental efforts to preserve Earth's wildlife. Prominent conservation agreements include the 1973 Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the 1992 Convention on Biological Diversity (CBD). There are also numerous nongovernmental organizations (NGO's) dedicated to conservation such as the Nature Conservancy, World Wildlife Fund, the Wild Animal Health Fund and Conservation International.

<span class="mw-page-title-main">Reconciliation ecology</span> Study of maintaining biodiversity in human-dominated ecosystems

Reconciliation ecology is the branch of ecology which studies ways to encourage biodiversity in the human-dominated ecosystems of the anthropocene era. Michael Rosenzweig first articulated the concept in his book Win-Win Ecology, based on the theory that there is not enough area for all of earth's biodiversity to be saved within designated nature preserves. Therefore, humans should increase biodiversity in human-dominated landscapes. By managing for biodiversity in ways that do not decrease human utility of the system, it is a "win-win" situation for both human use and native biodiversity. The science is based in the ecological foundation of human land-use trends and species-area relationships. It has many benefits beyond protection of biodiversity, and there are numerous examples of it around the globe. Aspects of reconciliation ecology can already be found in management legislation, but there are challenges in both public acceptance and ecological success of reconciliation attempts.

In landscape ecology, landscape connectivity is, broadly, "the degree to which the landscape facilitates or impedes movement among resource patches". Alternatively, connectivity may be a continuous property of the landscape and independent of patches and paths. Connectivity includes both structural connectivity and functional connectivity. Functional connectivity includes actual connectivity and potential connectivity in which movement paths are estimated using the life-history data.

<span class="mw-page-title-main">Wildlife corridor</span> Connecting wild territories for animals

A wildlife corridor, habitat corridor, or green corridor is an area of habitat connecting wildlife populations separated by human activities or structures. This allows an exchange of individuals between populations, which may help prevent the negative effects of inbreeding and reduced genetic diversity that often occur within isolated populations. Corridors may also help facilitate the re-establishment of populations that have been reduced or eliminated due to random events. This may moderate some of the worst effects of habitat fragmentation, whereas urbanization can split up habitat areas, causing animals to lose both their natural habitat and the ability to move between regions to access resources. Habitat fragmentation due to human development is an ever-increasing threat to biodiversity, and habitat corridors serve to manage its effects.

<span class="mw-page-title-main">Anthropogenic biome</span>

Anthropogenic biomes, also known as anthromes, human biomes or intensive land-use biome, describe the terrestrial biosphere (biomes) in its contemporary, human-altered form using global ecosystem units defined by global patterns of sustained direct human interaction with ecosystems. Anthromes are generally composed of heterogeneous mosaics of different land uses and land covers, including significant areas of fallow or regenerating habitats.

<span class="mw-page-title-main">Biodiversity in agriculture</span> Increasing biodiversity in agriculture

Biodiversity in agriculture is the measure of biodiversity found on agricultural land. Biodiversity is the total diversity of species present in an area at all levels of biological organization. It is characterized by heterogeneous habitats that support the diverse ecological structure. In agricultural areas, biodiversity decreases as varying landscapes are lost and native plants are replaced with cultivated crops. Increasing biodiversity in agriculture can increase the sustainability of farms through the restoration of ecosystem services that aid in regulating agricultural lands. Biodiversity in agriculture can be increased through the process of agroecological restoration, as farm biodiversity is an aspect of agroecology.

An intact forest landscape (IFL) is an unbroken natural landscape of a forest ecosystem and its habitat–plant community components, in an extant forest zone. An IFL is a natural environment with no signs of significant human activity or habitat fragmentation, and of sufficient size to contain, support, and maintain the complex of indigenous biodiversity of viable populations of a wide range of genera and species, and their ecological effects.

<span class="mw-page-title-main">Defaunation</span> Loss or extinctions of animals in the forests

Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species or loss of species in a given habitat

Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.

Adina Merenlender is a Professor of Cooperative Extension in Conservation Science at University of California, Berkeley in the Environmental Science, Policy, and Management Department, and is an internationally recognized conservation biologist known for land-use planning, watershed science, landscape connectivity, and naturalist and stewardship training.

<span class="mw-page-title-main">Multifunctional landscape</span> Type of landscape

Multifunctional landscapes are composed of lands used for multiple different purposes, including agriculture, forestry, settlements, recreation, conservation and restoration. With different parts of the landscape sustaining people and other species, multifunctional landscapes are heterogenous mosaics of lands used for agriculture and settlements that also include significant areas of habitats and regenerating ecosystems.

References

  1. 1 2 Kremen, C.; Merenlender, A. M. (2018-10-19). "Landscapes that work for biodiversity and people". Science. 362 (6412): eaau6020. doi:10.1126/science.aau6020. ISSN   0036-8075. PMID   30337381. S2CID   53012788.
  2. 1 2 Garibaldi, Lucas A.; Oddi, Facundo J.; Miguez, Fernando E.; Bartomeus, Ignasi; Orr, Michael C.; Jobbágy, Esteban G.; Kremen, Claire; Schulte, Lisa A.; Hughes, Alice C.; Bagnato, Camilo; Abramson, Guillermo; Bridgewater, Peter; Carella, Dulce Gomez; Díaz, Sandra; Dicks, Lynn V. (March 2021). "Working landscapes need at least 20% native habitat". Conservation Letters. 14 (2). doi: 10.1111/conl.12773 . hdl: 11603/20123 . ISSN   1755-263X. S2CID   226331859.
  3. Ellis, Erle C.; Gauthier, Nicolas; Klein Goldewijk, Kees; Bliege Bird, Rebecca; Boivin, Nicole; Díaz, Sandra; Fuller, Dorian Q.; Gill, Jacquelyn L.; Kaplan, Jed O.; Kingston, Naomi; Locke, Harvey; McMichael, Crystal N. H.; Ranco, Darren; Rick, Torben C.; Shaw, M. Rebecca (2021-04-27). "People have shaped most of terrestrial nature for at least 12,000 years". Proceedings of the National Academy of Sciences. 118 (17): e2023483118. Bibcode:2021PNAS..11823483E. doi: 10.1073/pnas.2023483118 . ISSN   0027-8424. PMC   8092386 . PMID   33875599.
  4. Hu, Tongxi; Toman, Elizabeth; Chen, Gang; Shao, Gang; Zhou, Yuyu (2021). "Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine" (PDF). ISPRS Journal of Photogrammetry and Remote Sensing. 176: 250–261. doi:10.1016/j.isprsjprs.2021.04.008.