Wrong-way driving warning

Last updated

Wrong-way driver warning is a new advanced driver-assistance system introduced in 2010 [1] [2] to prevent wrong-way driving.

In the case of signs imposing access restrictions, through the wrong-way driver warning function an acoustic warning is emitted together with a visual warning in the instrument cluster – making an effective[ citation needed ] contribution towards helping to prevent serious accidents caused by wrong-way drivers.

Vehicles

Related Research Articles

<span class="mw-page-title-main">Self-driving car</span> Vehicle operated with reduced human input

A self-driving car, also known as an autonomous car, driver-less car, or robotic car (robo-car), is a car that is capable of traveling without human input. Self-driving cars use sensors to perceive their surroundings, such as optical and thermographic cameras, radar, lidar, ultrasound/sonar, GPS, odometry and inertial measurement units. Control systems interpret sensory information to create a three-dimensional model of the vehicle's surroundings. Based on the model, the car then identifies an appropriate navigation path and strategies for managing traffic controls and obstacles.

<span class="mw-page-title-main">Nissan Fuga</span> Motor vehicle

The Nissan Fuga is a mid-size luxury sedan produced by Japanese automaker Nissan since October 2004. It is built on a wider, stretched wheelbase version of the Nissan FM platform. After the Nissan Cima and Nissan President were discontinued in August 2010, the Fuga became Nissan's flagship vehicle. In North America and Europe, the Fuga is sold as the second and third-generation Infiniti M, where it has been the flagship of the Infiniti luxury division of Nissan since 2006.

<span class="mw-page-title-main">Advanced driver-assistance system</span> Electronic systems that help a vehicle driver while driving or parking

An advanced driver-assistance system (ADAS) is any of a groups of electronic technologies that assist drivers in driving and parking functions. Through a safe human-machine interface, ADAS increase car and road safety. ADAS uses automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving, depending on the features installed in the car.

<span class="mw-page-title-main">Lane departure warning system</span> Mechanism designed to warn a driver when the vehicle begins to move out of its lane

In road-transport terminology, a lane departure warning system (LDWS) is a mechanism designed to warn the driver when the vehicle begins to move out of its lane on freeways and arterial roads. These systems are designed to minimize accidents by addressing the main causes of collisions: driver error, distractions and drowsiness. In 2009 the U.S. National Highway Traffic Safety Administration (NHTSA) began studying whether to mandate lane departure warning systems and frontal collision warning systems on automobiles.

<span class="mw-page-title-main">Automotive navigation system</span> Part of the automobile controls

An automotive navigation system is part of the automobile controls or a third party add-on used to find direction in an automobile. It typically uses a satellite navigation device to get its position data which is then correlated to a position on a road. When directions are needed routing can be calculated. On the fly traffic information can be used to adjust the route.

<span class="mw-page-title-main">Active Body Control</span>

Active Body Control, or ABC, is the Mercedes-Benz brand name used to describe electronically controlled hydropneumatic suspension.

<span class="mw-page-title-main">Mercedes-Benz S-Class (W221)</span> German luxury sedan

The Mercedes-Benz W221 is a chassis code of S-Class, the successor of the Mercedes-Benz S-Class (W220) and the predecessor of the Mercedes-Benz S-Class (W222). The S-Class are the flagship vehicles of Mercedes-Benz and each generation typically introduces a range of technical innovations and developments that over time will find their way into smaller cars.

<span class="mw-page-title-main">Automatic parking</span> Autonomous car-maneuvering system

Automatic parking is an autonomous car-maneuvering system that moves a vehicle from a traffic lane into a parking spot to perform parallel, perpendicular, or angle parking. The automatic parking system aims to enhance the comfort and safety of driving in constrained environments where much attention and experience is required to steer the car. The parking maneuver is achieved by means of coordinated control of the steering angle and speed which takes into account the actual situation in the environment to ensure collision-free motion within the available space.

<span class="mw-page-title-main">Adaptive cruise control</span> Cruise control advanced driver-assistance system

Adaptive cruise control (ACC) is an available cruise control advanced driver-assistance system for road vehicles that automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. As of 2019, it is also called by 20 unique names that describe that basic functionality. This is also known as Dynamic cruise control.

Intelligent speed assistance (ISA), or intelligent speed adaptation, also known as alerting, and intelligent authority, is any system that ensures that vehicle speed does not exceed a safe or legally enforced speed. In case of potential speeding, the driver can be alerted or the speed reduced automatically.

<span class="mw-page-title-main">Driver monitoring system</span> Vehicle safety system

The driver monitoring system, also known as driver attention monitor, is a vehicle safety system to assess the driver's alertness and warn the driver if needed and eventually apply the brakes. It was first introduced by Toyota in 2006 for its and Lexus' latest models. It was first offered in Japan on the GS 450h. The system's functions co-operate with the pre-collision system (PCS). The system uses infrared sensors to monitor driver attentiveness. Specifically, the driver monitoring system includes a CCD camera placed on the steering column which tracks the face, via infrared LED detectors. If the driver is not paying attention to the road ahead and a dangerous situation is detected, the system will warn the driver by flashing lights, warning sounds. If no action is taken, the vehicle will apply the brakes. This system is said to be the first of its kind.

<span class="mw-page-title-main">Collision avoidance system</span> Motorcar safety system

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system, or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

<span class="mw-page-title-main">Traffic-sign recognition</span> Technology

Traffic-sign recognition (TSR) is a technology by which a vehicle is able to recognize the traffic signs put on the road e.g. "speed limit" or "children" or "turn ahead". This is part of the features collectively called ADAS. The technology is being developed by a variety of automotive suppliers. It uses image processing techniques to detect the traffic signs. The detection methods can be generally divided into color based, shape based and learning based methods.

<span class="mw-page-title-main">Automotive night vision</span> Vehicle safety system

An automotive night vision system uses a thermographic camera to increase a driver's perception and seeing distance in darkness or poor weather beyond the reach of the vehicle's headlights. Such systems are offered as optional equipment on certain premium vehicles. The technology was first introduced in the year 2000 on the Cadillac Deville. This technology is based on the night vision devices (NVD), which generally denotes any electronically enhanced optical devices operate in three modes: image enhancement, thermal imaging, and active illumination. The automotive night vision system is a combination of NVDs such as infrared cameras, GPS, Lidar, and Radar, among others to sense and detect objects.

Driver drowsiness detection is a car safety technology which helps prevent accidents caused by the driver getting drowsy. Various studies have suggested that around 20% of all road accidents are fatigue-related, up to 50% on certain roads.

<span class="mw-page-title-main">Electric vehicle warning sounds</span> Safety feature

Electric vehicle warning sounds are sounds designed to alert pedestrians to the presence of electric drive vehicles such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) travelling at low speeds. Warning sound devices were deemed necessary by some government regulators because vehicles operating in all-electric mode produce less noise than traditional combustion engine vehicles and can make it more difficult for pedestrians and cyclists to be aware of their presence. Warning sounds may be driver triggered or automatic at low speeds; in type, they vary from clearly artificial to those that mimic engine sounds and those of tires moving over gravel.

A connected car is a car that can communicate bidirectionally with other systems outside of the car (LAN). This allows the car to share internet access, and hence data, with other devices both inside and outside the vehicle. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications (DSRC) or cellular radios, operating in the FCC-granted 5.9 GHz band with very low latency.

<span class="mw-page-title-main">CarWings</span>

CarWings, renamed NissanConnect in 2015, and also branded as Infiniti InTouch is a vehicle telematics service offered by the Nissan Motor Company to drivers in Japan, the United States, Canada, Great Britain, and most other countries where the LEAF is sold. It provides mobile connectivity for on-demand traffic information services and internet provided maps displayed inside select Nissan vehicles. The service began in December 1997, having been installed in the 1997 Nissan Cedric, Nissan Gloria, Nissan President, Nissan Cima and the Nissan Elgrand.

<span class="mw-page-title-main">History of self-driving cars</span> Overview of the history of self-driving cars

The first modern patent Atonumas Vehicles was invented by William L Kelley in 1990 ie. Collision Predicting and Avoiding Device for Moving Vehicles. #4926171

<span class="mw-page-title-main">Lane centering</span> Mechanism designed to keep a car centered in the lane

In road-transport terminology, lane centering, also known as auto steer or autosteer, is an advanced driver-assistance system that keeps a road vehicle centered in the lane, relieving the driver of the task of steering. Lane centering is similar to lane departure warning and lane keeping assist, but rather than warn the driver, or bouncing the car away from the lane edge, it keeps the car centered in the lane. Together with adaptive cruise control (ACC), this feature may allow unassisted driving for some length of time. It is also part of automated lane keeping systems.

References

  1. 1 2 "Technology - Automotive Engineer". ae-plus.com. Archived from the original on 26 November 2015. Retrieved 26 November 2015.
  2. Umar Zakir Abdul, Hamid; et al. (2016). "Current Collision Mitigation Technologies for Advanced Driver Assistance Systems–A Survey". PERINTIS eJournal. 6 (2). Retrieved 14 June 2017.
  3. "Toyota To Add Wrong Way Driving Alert To Navigation Systems". AutoGuide.com News. 26 May 2011. Retrieved 26 November 2015.
  4. "TMC to Add Wrong-way Driving Alert to Navigation Systems". toyota.co.jp. Archived from the original on 31 December 2014. Retrieved 26 November 2015.
  5. "The driving assistance systems: Helpers in the background". daimler.com. 15 May 2013. Archived from the original on 4 March 2016. Retrieved 26 November 2015.