X-parameters

Last updated
Agilent engineer demonstrates X-parameter functionality at IEEE MTT-S International Microwave Symposium, Boston MA June 10, 2009.) Agilent-pna-x-advanced-design-system.jpg
Agilent engineer demonstrates X-parameter functionality at IEEE MTT-S International Microwave Symposium, Boston MA June 10, 2009.)

X-parameters are a generalization of S-parameters and are used for characterizing the amplitudes and relative phase of harmonics generated by nonlinear components under large input power levels. X-parameters are also referred to as the parameters of the Poly-Harmonic Distortion (PHD) nonlinear behavioral model.

Contents

Description

X-parameters represent a new category of nonlinear network parameters for high-frequency design (Nonlinear vector network analyzers are sometimes called large signal network analyzers. [1] )

X-parameters are applicable to both large-signal and small-signal conditions, for linear and nonlinear components. They are an extension of S-parameters [2] meaning that, in the limit of a small signal, X-parameters reduce to S-parameters.

They help overcome a key challenge in RF engineering, namely that nonlinear impedance differences, harmonic mixing, and nonlinear reflection effects occur when components are cascaded under large signal operating conditions. This means that there is a nonlinear and as such non-trivial relationship between the properties of the individual cascaded components and the composite properties of the resulting cascade. This situation is unlike that at DC, where one can simply add the values of resistors connected in series. X-parameters help solve this cascading problem: if the X-parameters of a set of components are measured individually, the X-parameters (and hence the non-linear transfer function) can be calculated of any cascade made from them. Calculations based on X-parameters are usually performed within a harmonic balance simulator environment. [3]

Development

X-parameters were developed and introduced by Keysight Technologies as functionality included in N5242A Nonlinear Vector Network Analyzer, [4] [5] and the W2200 Advanced Design System in 2008. N5242A is a Keysight [6] product that were formerly part of Agilent. [7]

X-parameters are the parameters of the polyharmonic distortion modeling work of Dr. Jan Verspecht [8] [9] and Dr. David E. Root. [9]

See also

Notes

  1. Dr. Jan Verspecht (December 2005). "Large-Signal Network Analysis" (PDF). IEEE Microwave Magazine. IEEE. 6 (4): 82–92. doi:10.1109/MMW.2005.1580340. S2CID   23109051 . Retrieved May 1, 2009.
  2. "EDA Focus: May 2009, Transcript of interview of David E. Root by Microwave Journal Editor David Vye on April 16th, 2009". Microwave Journal. April 16, 2009. Retrieved May 4, 2009.
  3. "Keysight NVNA & X-Parameters Simulation in ADS: The new paradigm for nonlinear measurements, modeling, and simulation with ADS (PDF, 1MB) on the X-Parameters MMIC Design Seminar page" . Retrieved July 17, 2015.
  4. "Agilent Technologies Announces Breakthrough in X-Parameter Nonlinear Model Generation for Components Used in Wireless, Aerospace Defense Industries: X-Parameters Enable Model Generation from Simulation or Measurement, for Fast Development". Keysight.com. December 17, 2008. Retrieved May 6, 2009.
  5. "Keysight N5242A PNA-X Series Microwave Network Analyzer, 10 MHz to 26.5 GHz" . Retrieved July 17, 2015.
  6. "Electronic design, test automation and measurement equipment". Keysight Technologies.
  7. "Agilent's Electronic Measurement business is now Keysight Technologies". Agilent Technologies.
  8. Dr. Jan Verspecht (October 1996). "Black Box Modelling of Power Transistors in the Frequency Domain" (PDF). Conference Paper Presented at the INMMC '96, Duisburg, Germany. Retrieved May 6, 2009. (PDF, 85 KB)
  9. 1 2 Dr. Jan Verspecht; Dr. David E. Root (June 2006). "Polyharmonic Distortion Modeling" (PDF). IEEE Microwave Magazine. IEEE. 7 (3): 44–57. doi:10.1109/MMW.2006.1638289. S2CID   20488542 . Retrieved May 6, 2009. (PDF, 2.4MB)

Related Research Articles

<span class="mw-page-title-main">Logic analyzer</span> Electronic test instrument that measures multiple signals from a circuit

A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, opcodes, or may correlate opcodes with source-level software. Logic analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.

In signal processing, distortion is the alteration of the original shape of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel.

<span class="mw-page-title-main">Phase noise</span> Frequency domain representation of random fluctuations in the phase of a waveform

In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity (jitter). Generally speaking, radio-frequency engineers speak of the phase noise of an oscillator, whereas digital-system engineers work with the jitter of a clock.

SPICE is a general-purpose, open-source analog electronic circuit simulator. It is a program used in integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior.

<span class="mw-page-title-main">Spectrum analyzer</span> Electronic testing device

A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements.

In electronics, a frequency multiplier is an electronic circuit that generates an output signal and that output frequency is a harmonic (multiple) of its input frequency. Frequency multipliers consist of a nonlinear circuit that distorts the input signal and consequently generates harmonics of the input signal. A subsequent bandpass filter selects the desired harmonic frequency and removes the unwanted fundamental and other harmonics from the output.

Electric power quality is the degree to which the voltage, frequency, and waveform of a power supply system conform to established specifications. Good power quality can be defined as a steady supply voltage that stays within the prescribed range, steady AC frequency close to the rated value, and smooth voltage curve waveform. In general, it is useful to consider power quality as the compatibility between what comes out of an electric outlet and the load that is plugged into it. The term is used to describe electric power that drives an electrical load and the load's ability to function properly. Without the proper power, an electrical device may malfunction, fail prematurely or not operate at all. There are many ways in which electric power can be of poor quality, and many more causes of such poor quality power.

<span class="mw-page-title-main">Microwave power meter</span> Electrical test equipment

A microwave power meter is an instrument which measures the electrical power at microwave frequencies typically in the range 100 MHz to 40 GHz.

<span class="mw-page-title-main">RF switch</span>

An RF switch or microwave switch is a device to route high frequency signals through transmission paths. RF and microwave switches are used extensively in microwave test systems for signal routing between instruments and devices under test (DUT). Incorporating a switch into a switch matrix system enables you to route signals from multiple instruments to single or multiple DUTs. This allows multiple tests to be performed with the same setup, eliminating the need for frequent connects and disconnects. The entire testing process can be automated, increasing the throughput in high-volume production environments.

<span class="mw-page-title-main">Network analyzer (electrical)</span> Instrument that measures the network parameters of electrical networks

A network analyzer is an instrument that measures the network parameters of electrical networks. Today, network analyzers commonly measure s–parameters because reflection and transmission of electrical networks are easy to measure at high frequencies, but there are other network parameter sets such as y-parameters, z-parameters, and h-parameters. Network analyzers are often used to characterize two-port networks such as amplifiers and filters, but they can be used on networks with an arbitrary number of ports.

<span class="mw-page-title-main">Signal integrity</span>

Signal integrity or SI is a set of measures of the quality of an electrical signal. In digital electronics, a stream of binary values is represented by a voltage waveform. However, digital signals are fundamentally analog in nature, and all signals are subject to effects such as noise, distortion, and loss. Over short distances and at low bit rates, a simple conductor can transmit this with sufficient fidelity. At high bit rates and over longer distances or through various mediums, various effects can degrade the electrical signal to the point where errors occur and the system or device fails. Signal integrity engineering is the task of analyzing and mitigating these effects. It is an important activity at all levels of electronics packaging and assembly, from internal connections of an integrated circuit (IC), through the package, the printed circuit board (PCB), the backplane, and inter-system connections. While there are some common themes at these various levels, there are also practical considerations, in particular the interconnect flight time versus the bit period, that cause substantial differences in the approach to signal integrity for on-chip connections versus chip-to-chip connections.

Transistors are simple devices with complicated behavior. In order to ensure the reliable operation of circuits employing transistors, it is necessary to scientifically model the physical phenomena observed in their operation using transistor models. There exists a variety of different models that range in complexity and in purpose. Transistor models divide into two major groups: models for device design and models for circuit design.

PathWave Design is a division of Keysight Technologies that was formerly called EEsof. It is a provider of electronic design automation (EDA) software that helps engineers design products such as cellular phones, wireless networks, radar, satellite communications systems, and high-speed digital wireline infrastructure. Applications include electronic system level (ESL), high-speed digital, RF-Mixed signal, device modeling, RF and Microwave design for commercial wireless, aerospace, and defense markets.

Momentum is 3-D planar EM simulation software for electronics and antenna analysis, a partial differential equation solver of Maxwell's equations based on the method of moments. It is a 3-D planar electromagnetic (EM) simulator used for passive circuit analysis.

Compact Software was the first commercially successful microwave computer-aided design (CAD) company. The company was founded in 1973 by Les Besser to commercialize his eponymous program COMPACT, released when he was at Farinon Electric Company.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

The space mapping methodology for modeling and design optimization of engineering systems was first discovered by John Bandler in 1993. It uses relevant existing knowledge to speed up model generation and design optimization of a system. The knowledge is updated with new validation information from the system when available.

Keysight Technologies, or Keysight, is an American company that manufactures electronics test and measurement equipment and software. The name is a blend of key and insight. The company was formed as a spin-off of Agilent Technologies, which inherited and rebranded the test and measurement product lines developed and produced from the late 1960s to the turn of the millennium by Hewlett-Packard's Test & Measurement division.

Multidimensional Digital Pre-distortion (MDDPD), often referred to as multiband digital pre-distortion (MBDPD), is a subset of digital predistortion (DPD) that enables DPD to be applied to signals (channels) that cannot or do not pass through the same digital pre-distorter but do concurrently pass through the same nonlinear system. Its ability to do so comes from the portion of multidimensional signal theory that deals with one dimensional discrete time vector input - 1-D discrete time vector output systems as defined in Multidimensional Digital Signal Processing. The first paper in which it found application was in 1991 as seen here. None of the applications of MDDPD are able to make use of the linear shift invariant (LSI) system properties as by definition they are nonlinear and not shift-invariant although they are often approximated as shift-invariant (memoryless).

An impedance analyzer is a type of electronic test equipment used to measure complex electrical impedance as a function of test frequency.