Xocolatlite

Last updated
Xocolatlite
Xocolatlite-214968.jpg
Moctezuma Mine, Moctezuma, Municipio de Moctezuma, Sonora, Mexico
General
Category Sulfate minerals
Formula
(repeating unit)
Ca 2 Mn 4+2(Te 6+ O 6)2 · H 2 O
IMA symbol Xoc [1]
Strunz classification 7.DF.85
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P2/m
Identification
Formula mass 655.24 g/mol
Color Chocolate brown
Crystal habit Encrustations; Micaceous
Fracture Conchoidal
Mohs scale hardness2-3
Luster Vitreous
Streak Copper brown
Diaphaneity Transparent
Specific gravity 4.10 g/cc
Density 4.1 g/cc
References [2] [3]

Xocolatlite is a sulfate mineral named for its chocolatey appearance. Discovered in the La Bambolla gold mine of Moctezuma, Sonora, Mexico, Xocolatlite's name is derived from the Nahuatl word xocolatl (literally "bitter water"; a root word of "chocolate"), a drink made from cocoa, water, and chili.

Related Research Articles

<span class="mw-page-title-main">Hornblende</span> Complex inosilicate series of minerals

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

<span class="mw-page-title-main">Celestine (mineral)</span> Sulfate mineral

Celestine (the IMA-accepted name) or celestite is a mineral consisting of strontium sulfate (SrSO4). The mineral is named for its occasional delicate blue color. Celestine and the carbonate mineral strontianite are the principal sources of the element strontium, commonly used in fireworks and in various metal alloys.

<span class="mw-page-title-main">Actinolite</span>

Actinolite is an amphibole silicate mineral with the chemical formula Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2.

<span class="mw-page-title-main">Petalite</span> Silicate mineral, used in ceramic glazing

Petalite, also known as castorite, is a lithium aluminum phyllosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. Petalite (and secondary spodumen formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones.

<span class="mw-page-title-main">Cassiterite</span> Tin oxide mineral, SnO₂

Cassiterite is a tin oxide mineral, SnO2. It is generally opaque, but it is translucent in thin crystals. Its luster and multiple crystal faces produce a desirable gem. Cassiterite was the chief tin ore throughout ancient history and remains the most important source of tin today.

<span class="mw-page-title-main">Chalcanthite</span> Sulfate mineral

Chalcanthite is a richly colored blue-green water-soluble sulfate mineral CuSO4 · 5H2O. It is commonly found in the late-stage oxidation zones of copper deposits. Due to its ready solubility, chalcanthite is more common in arid regions.

<span class="mw-page-title-main">Epsomite</span> Sulfate mineral

Epsomite, Epsom salt, or magnesium sulfate heptahydrate, is a hydrous magnesium sulfate mineral with formula MgSO4·7H2O.

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Cordierite</span> Mg, Fe, Al cyclosilicate mineral

Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings.

<span class="mw-page-title-main">Anthophyllite</span>

Anthophyllite is an orthorhombic amphibole mineral: ☐Mg2Mg5Si8O22(OH)2 (☐ is for a vacancy, a point defect in the crystal structure), magnesium iron inosilicate hydroxide. Anthophyllite is polymorphic with cummingtonite. Some forms of anthophyllite are lamellar or fibrous and are classed as asbestos. The name is derived from the Latin word anthophyllum, meaning clove, an allusion to the most common color of the mineral. The Anthophyllite crystal is characterized by its perfect cleavage along directions 126 degrees and 54 degrees.

<span class="mw-page-title-main">Enargite</span> Sulfosalt mineral

Enargite is a copper arsenic sulfosalt mineral with formula Cu3AsS4. It takes its name from the Greek word enarge, "distinct". Enargite is a steel gray, blackish gray, to violet black mineral with metallic luster. It forms slender orthorhombic prisms as well as massive aggregates. It has a hardness of 3 and a specific gravity of 4.45.

Acuminite is a rare halide mineral with chemical formula: SrAlF4(OH)·(H2O). Its name comes from the Latin word acumen, meaning "spear point". Its Mohs scale rating is 3.5.

<span class="mw-page-title-main">Aenigmatite</span> Sapphirine supergroup, single chain inosilicate mineral

Aenigmatite, also known as Cossyrite after Cossyra, the ancient name of Pantelleria, is a sodium, iron, titanium inosilicate mineral. The chemical formula is Na2Fe2+5TiSi6O20 and its structure consists of single tetrahedral chains with a repeat unit of four and complex side branches. It forms brown to black triclinic lamellar crystals. It has Mohs hardness of 5.5 to 6 and specific gravity of 3.74 to 3.85. Aenigmatite forms a solid-solution series with wilkinsonite, Na2Fe2+4Fe3+2Si6O20.

<span class="mw-page-title-main">Aerugite</span> Nickel arsenate mineral

Aerugite is a rare complex nickel arsenate mineral with a variably reported formula: Ni9(AsO4)2AsO6. It forms green to deep blue-green trigonal crystals. It has a Mohs hardness of 4 and a specific gravity of 5.85 to 5.95.

Aeschynite-(Ce) is a rare earth mineral of cerium, calcium, iron, thorium, titanium, niobium, oxygen, and hydrogen with chemical formula (Ce,Ca,Fe,Th)(Ti,Nb)2(O,OH)6. Its name comes from the Greek word αισχύνη ("aeschyne") for "shame" because early chemists had difficulty with separations of titanium from zirconium.

<span class="mw-page-title-main">Aeschynite-(Y)</span> Rare earth mineral

Aeschynite-(Y) is a rare earth mineral of yttrium, calcium, iron, thorium, titanium, niobium, oxygen, and hydrogen with the chemical formula (Y,Ca,Fe,Th)(Ti,Nb)2(O,OH)6. Its name comes from the Greek word for "shame". Its Mohs scale rating is 5 to 6.

<span class="mw-page-title-main">Lepidocrocite</span> Iron oxide-hydroxide mineral

Lepidocrocite, also called esmeraldite or hydrohematite, is an iron oxide-hydroxide mineral. Lepidocrocite has an orthorhombic crystal structure, a hardness of 5, specific gravity of 4, a submetallic luster and a yellow-brown streak. It is red to reddish brown and forms when iron-containing substances rust underwater. Lepidocrocite is commonly found in the weathering of primary iron minerals and in iron ore deposits. It can be seen as rust scale inside old steel water pipes and water tanks.

<span class="mw-page-title-main">Hawleyite</span> Sulfide mineral

Hawleyite is a rare sulfide mineral in the sphalerite group, dimorphous and easily confused with greenockite. Chemically, it is cadmium sulfide, and occurs as a bright yellow coating on sphalerite or siderite in vugs, deposited by meteoric water.

<span class="mw-page-title-main">Xocomecatlite</span>

Xocomecatlite is a rare tellurate mineral with formula: Cu3(TeO4)(OH)4. It is an orthorhombic mineral which occurs as aggregates or spherules of green needlelike crystals.

<span class="mw-page-title-main">Macaulayite</span>

Macaulayite is a red, earthy, monoclinic mineral, with the chemical formula (Fe3+, Al)24Si4O43(OH)2. It was discovered in the 1970s by Jeff Wilson and named after the Macaulay Institute in Aberdeen, Scotland. The only known source of macaulayite in the world is a quarry at the foot of Bennachie, Aberdeenshire, and it is formed by granite which has been weathered by tropical climates from before the last ice age. The substance is currently being studied by NASA, as it is speculated that this is the substance which gives the planet Mars its colour and it could prove that life on Mars can be sustained.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Xocolatlite mineral data from Webmineral
  3. Mindat.org