Xylomannan

Last updated

Xylomannan is an antifreeze molecule, found in the freeze-tolerant Alaskan beetle Upis ceramboides . [1] Unlike antifreeze proteins, xylomannan is not a protein. Instead, it is a combination of a sugar (saccharide) and a fatty acid that is found in cell membranes. [2] As such is expected to work in a different manner than AFPs. It is believed to work by incorporating itself directly into the cell membrane and preventing the freezing of water molecules within the cell. [3]

Xylomannan is also found in the red seaweed Nothogenia fastigiata (Scinaiaceae family). Fraction F6 of a sulphated xylomannan from Nothogenia fastigiata was found to inhibit replication of a variety of viruses, including Herpes simplex virus types 1 and 2 (HSV-1, HSV-2), Human cytomegalovirus (HCMV, HHV-5), Respiratory syncytial virus (RSV), Influenzavirus A, Influenzavirus B, Junin and Tacaribe virus, Simian immunodeficiency virus, and (weakly) Human immunodeficiency virus types 1 and 2. [4]

Related Research Articles

<span class="mw-page-title-main">HIV</span> Human retrovirus, cause of AIDS

The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype.

<span class="mw-page-title-main">Retrovirus</span> Family of viruses

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus.

<span class="mw-page-title-main">Antifreeze protein</span>

Antifreeze proteins (AFPs) or ice structuring proteins refer to a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival in temperatures below the freezing point of water. AFPs bind to small ice crystals to inhibit the growth and recrystallization of ice that would otherwise be fatal. There is also increasing evidence that AFPs interact with mammalian cell membranes to protect them from cold damage. This work suggests the involvement of AFPs in cold acclimatization.

<i>Orthomyxoviridae</i> Family of RNA viruses including the influenza viruses

Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).

<span class="mw-page-title-main">Herpes simplex virus</span> Species of virus

Herpes simplex virus1 and 2, also known by their taxonomical names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus.

Env is a viral gene that encodes the protein forming the viral envelope. The expression of the env gene enables retroviruses to target and attach to specific cell types, and to infiltrate the target cell membrane.

Insect winter ecology describes the overwinter survival strategies of insects, which are in many respects more similar to those of plants than to many other animals, such as mammals and birds. Unlike those animals, which can generate their own heat internally (endothermic), insects must rely on external sources to provide their heat (ectothermic). Thus, insects persisting in winter weather must tolerate freezing or rely on other mechanisms to avoid freezing. Loss of enzymatic function and eventual freezing due to low temperatures daily threatens the livelihood of these organisms during winter. Not surprisingly, insects have evolved a number of strategies to deal with the rigors of winter temperatures in places where they would otherwise not survive.

<span class="mw-page-title-main">Threitol</span> Chemical compound

Threitol is a four-carbon sugar alcohol with the molecular formula C4H10O4. It is primarily used as an intermediate in the chemical synthesis of other compounds. It is the diastereomer of erythritol, which is used as a sugar substitute.

<span class="mw-page-title-main">Importin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Importin subunit alpha-1 is a protein that in humans is encoded by the KPNA2 gene.

<span class="mw-page-title-main">Importin subunit alpha-4</span>

Importin subunit alpha-4 also known as karyopherin subunit alpha-3 is a protein that in humans is encoded by the KPNA3 gene.

<span class="mw-page-title-main">Importin subunit alpha-6</span>

Importin subunit alpha-6 is a protein that in humans is encoded by the KPNA5 gene.

<span class="mw-page-title-main">CLEC4M</span> Protein-coding gene in the species Homo sapiens

C-type lectin domain family 4 member M is a protein that in humans is encoded by the CLEC4M gene. CLEC4M has also been designated as CD299.

<span class="mw-page-title-main">Moesin</span> Protein-coding gene in the species Homo sapiens

Moesin is a protein that in humans is encoded by the MSN gene.

<span class="mw-page-title-main">Glycylpeptide N-tetradecanoyltransferase 1</span> Protein-coding gene in the species Homo sapiens

Glycylpeptide N-tetradecanoyltransferase 1 also known as myristoyl-CoA:protein N-myristoyltransferase 1 (NMT-1) is an enzyme that in humans is encoded by the NMT1 gene. It belongs to the protein N-terminal methyltransferase and glycylpeptide N-tetradecanoyltransferase family of enzymes.

<span class="mw-page-title-main">Poliovirus receptor-related 1</span>

Poliovirus receptor-related 1 (PVRL1), also known as nectin-1 and CD111 (formerly herpesvirus entry mediator C, HVEC) is a human protein of the immunoglobulin superfamily (IgSF), also considered a member of the nectins. It is a membrane protein with three extracellular immunoglobulin domains, a single transmembrane helix and a cytoplasmic tail. The protein can mediate Ca2+-independent cellular adhesion further characterizing it as IgSF cell adhesion molecule (IgSF CAM).

<span class="mw-page-title-main">IFITM1</span>

Interferon-induced transmembrane protein 1 is a protein that in humans is encoded by the IFITM1 gene. IFITM1 has also recently been designated CD225. This protein has several additional names: fragilis, IFI17 [interferon-induced protein 17], 9-27 [Interferon-inducible protein 9-27] and Leu13.

<span class="mw-page-title-main">Vpu protein</span>

Vpu is an accessory protein that in HIV is encoded by the vpu gene. Vpu stands for "Viral Protein U". The Vpu protein acts in the degradation of CD4 in the endoplasmic reticulum and in the enhancement of virion release from the plasma membrane of infected cells. Vpu induces the degradation of the CD4 viral receptor and therefore participates in the general downregulation of CD4 expression during the course of HIV infection. Vpu-mediated CD4 degradation is thought to prevent CD4-Env binding in the endoplasmic reticulum to facilitate proper Env assembly into virions. It is found in the membranes of infected cells, but not the virus particles themselves.

<span class="mw-page-title-main">Vectors in gene therapy</span>

Gene therapy utilizes the delivery of DNA into cells, which can be accomplished by several methods, summarized below. The two major classes of methods are those that use recombinant viruses and those that use naked DNA or DNA complexes.

<i>Upis ceramboides</i> Species of beetle

Upis ceramboides is a species of beetle, one of many wood-living insects that benefit from forest fires. It often occurs in quantities below the bark on the fire-damaged birches, but can sometimes be seen on other deciduous trees such as willow and aspen. The larvae thrive in the inner bark which is rich in mycelia, and in the sapwood. They develop into pupae during the summer months under the bark, and they develop over two or three years. The following spring they reproduce themselves.

<span class="mw-page-title-main">Scinaiaceae</span> Family of algae

Scinaiaceae is a family of red algae (Rhodophyta) in the order Nemaliales.

References

  1. Walters KR Jr; Serianni AS; Sformo T; Barnes BM; Duman JG (2009). "A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides". PNAS . 106 (48): 20210–5. Bibcode:2009PNAS..10620210W. doi: 10.1073/pnas.0909872106 . PMC   2787118 . PMID   19934038.
  2. Ishiwata A, Sakurai A, Nishimiya Y, Tsuda S, Ito Y (Dec 7, 2011). "Synthetic study and structural analysis of the antifreeze agent xylomannan from Upis ceramboides". J Am Chem Soc. 133 (48): 19524–35. doi:10.1021/ja208528c. PMID   22029271.
  3. "New Antifreeze Molecule Isolated In Alaska Beetle - Science News - redOrbit".
  4. Damonte E, Neyts J, Pujol CA, et al. (June 1994). "Antiviral activity of a sulphated polysaccharide from the red seaweed Nothogenia fastigiata". Biochemical Pharmacology. 47 (12): 2187–92. doi:10.1016/0006-2952(94)90254-2. PMID   8031312.