Z* theorem

Last updated

In mathematics, George Glauberman's Z* theorem is stated as follows:

Z* theorem: Let G be a finite group, with O(G) being its maximal normal subgroup of odd order. If T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z*(G), which is the inverse image in G of the center of G/O(G).

This generalizes the Brauer–Suzuki theorem (and the proof uses the Brauer–Suzuki theorem to deal with some small cases).

Details

The original paper Glauberman (1966) gave several criteria for an element to lie outside Z*(G). Its theorem 4 states:

For an element t in T, it is necessary and sufficient for t to lie outside Z*(G) that there is some g in G and abelian subgroup U of T satisfying the following properties:

  1. g normalizes both U and the centralizer CT(U), that is g is contained in N = NG(U) ∩ NG(CT(U))
  2. t is contained in U and tggt
  3. U is generated by the N-conjugates of t
  4. the exponent of U is equal to the order of t

Moreover g may be chosen to have prime power order if t is in the center of T, and g may be chosen in T otherwise.

A simple corollary is that an element t in T is not in Z*(G) if and only if there is some st such that s and t commute and s and t are G-conjugate.

A generalization to odd primes was recorded in Guralnick & Robinson (1993): if t is an element of prime order p and the commutator [t, g] has order coprime to p for all g, then t is central modulo the p′-core. This was also generalized to odd primes and to compact Lie groups in Mislin & Thévenaz (1991), which also contains several useful results in the finite case.

Henke & Semeraro (2015) have also studied an extension of the Z* theorem to pairs of groups (G, H) with H a normal subgroup of G.

Works cited

Related Research Articles

<span class="mw-page-title-main">Classification of finite simple groups</span> Massive theorem assigning all but 27 finite simple groups to a few infinite families

In mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

<span class="mw-page-title-main">Sylow theorems</span> Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

<span class="mw-page-title-main">Conway group</span>

In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).

<span class="mw-page-title-main">Suzuki sporadic group</span>

In the area of modern algebra known as group theory, the Suzuki groupSuz or Sz is a sporadic simple group of order

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.

In mathematics, the Brauer–Suzuki theorem, proved by Brauer & Suzuki (1959), Suzuki (1962), Brauer (1964), states that if a finite group has a generalized quaternion Sylow 2-subgroup and no non-trivial normal subgroups of odd order, then the group has a center of order 2. In particular, such a group cannot be simple.

George Isaac Glauberman is a mathematician at the University of Chicago who works on finite simple groups. He proved the ZJ theorem and the Z* theorem.

In mathematics, George Glauberman's ZJ theorem states that if a finite group G is p-constrained and p-stable and has a normal p-subgroup for some odd prime p, then Op(G)Z(J(S)) is a normal subgroup of G, for any Sylow p-subgroupS.

Brauer's main theorems are three theorems in representation theory of finite groups linking the blocks of a finite group with those of its p-local subgroups, that is to say, the normalizers of its non-trivial p-subgroups.

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functor comes from a subgroup. The idea is to try to construct a -subgroup of a finite group , which has a good chance of being normal in , by taking as generators certain -subgroups of the centralizers of nonidentity elements in one or several given noncyclic elementary abelian -subgroups of The technique has origins in the Feit–Thompson theorem, and was subsequently developed by many people including Gorenstein (1969) who defined signalizer functors, Glauberman (1976) who proved the Solvable Signalizer Functor Theorem for solvable groups, and McBride who proved it for all groups. This theorem is needed to prove the so-called "dichotomy" stating that a given nonabelian finite simple group either has local characteristic two, or is of component type. It thus plays a major role in the classification of finite simple groups.

In finite group theory, an area of abstract algebra, a strongly embedded subgroup of a finite group G is a proper subgroup H of even order such that H ∩ Hg has odd order whenever g is not in H. The Bender–Suzuki theorem, proved by Bender (1971) extending work of Suzuki (1962, 1964), classifies the groups G with a strongly embedded subgroup H. It states that either

  1. G has cyclic or generalized quaternion Sylow 2-subgroups and H contains the centralizer of an involution
  2. or G/O(G) has a normal subgroup of odd index isomorphic to one of the simple groups PSL2(q), Sz(q) or PSU3(q) where q≥4 is a power of 2 and H is O(G)NG(S) for some Sylow 2-subgroup S.

In mathematical finite group theory, the Thompson order formula, introduced by John Griggs Thompson, gives a formula for the order of a finite group in terms of the centralizers of involutions, extending the results of Brauer & Fowler (1955).

In mathematical finite group theory, the classical involution theorem of Aschbacher classifies simple groups with a classical involution and satisfying some other conditions, showing that they are mostly groups of Lie type over a field of odd characteristic. Berkman (2001) extended the classical involution theorem to groups of finite Morley rank.

In finite group theory, a p-stable group for an odd prime p is a finite group satisfying a technical condition introduced by Gorenstein and Walter in order to extend Thompson's uniqueness results in the odd order theorem to groups with dihedral Sylow 2-subgroups.

Conway group Co<sub>1</sub>

In the area of modern algebra known as group theory, the Conway groupCo1 is a sporadic simple group of order

In mathematical group theory, the Thompson replacement theorem is a theorem about the existence of certain abelian subgroups of a p-group. The Glauberman replacement theorem is a generalization of it introduced by Glauberman.