Zero-sum problem

Last updated

In number theory, zero-sum problems are certain kinds of combinatorial problems about the structure of a finite abelian group. Concretely, given a finite abelian group G and a positive integer n, one asks for the smallest value of k such that every sequence of elements of G of size k contains n terms that sum to 0.

Contents

The classic result in this area is the 1961 theorem of Paul Erdős, Abraham Ginzburg, and Abraham Ziv. [1] They proved that for the group of integers modulo n,

Explicitly this says that any multiset of 2n − 1 integers has a subset of size n the sum of whose elements is a multiple of n, but that the same is not true of multisets of size 2n − 2. (Indeed, the lower bound is easy to see: the multiset containing n − 1 copies of 0 and n − 1 copies of 1 contains no n-subset summing to a multiple of n.) This result is known as the Erdős–Ginzburg–Ziv theorem after its discoverers. It may also be deduced from the Cauchy–Davenport theorem. [2]

More general results than this theorem exist, such as Olson's theorem, Kemnitz's conjecture (proved by Christian Reiher in 2003 [3] ), and the weighted EGZ theorem (proved by David J. Grynkiewicz in 2005 [4] ).

See also

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.

In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

In additive combinatorics, the sumset of two subsets and of an abelian group is defined to be the set of all sums of an element from with an element from . That is,

In additive combinatorics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.

Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets A and B of elements from an abelian group G,

In additive number theory, an additive basis is a set of natural numbers with the property that, for some finite number , every natural number can be expressed as a sum of or fewer elements of . That is, the sumset of copies of consists of all natural numbers. The order or degree of an additive basis is the number . When the context of additive number theory is clear, an additive basis may simply be called a basis. An asymptotic additive basis is a set for which all but finitely many natural numbers can be expressed as a sum of or fewer elements of .

In additive number theory and combinatorics, a restricted sumset has the form

In additive combinatorics and number theory, a subset A of an abelian group G is said to be sum-free if the sumset A + A is disjoint from A. In other words, A is sum-free if the equation has no solution with .

Combinatorial number theory deals with number theoretic problems which involve combinatorial ideas in their formulations or solutions. Paul Erdős is the main founder of this branch of number theory. Typical topics include covering system, zero-sum problems, various restricted sumsets, and arithmetic progressions in a set of integers. Algebraic or analytic methods are powerful in this field.

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are inverse problems: given the size of the sumset A + B is small, what can we say about the structures of and ? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions.

In additive number theory, Kemnitz's conjecture states that every set of lattice points in the plane has a large subset whose centroid is also a lattice point. It was proved independently in the autumn of 2003 by Christian Reiher, then an undergraduate student, and Carlos di Fiore, then a high school student.

In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 and 1956. They may be regarded as extensions of the Cauchy–Davenport theorem, which also concerns sumsets in groups but is restricted to groups whose order is a prime number.

In mathematics, the Davenport constantD(G ) is an invariant of a group studied in additive combinatorics, quantifying the size of nonunique factorizations. Given a finite abelian group G, D(G ) is defined as the smallest number such that every sequence of elements of that length contains a non-empty subsequence adding up to 0. In symbols, this is

Abraham Ziv was an Israeli mathematician, known for his contributions to the Zero-sum problem as one of the discoverers of the Erdős–Ginzburg–Ziv theorem.

<span class="mw-page-title-main">Abraham Ginzburg</span>

Abraham Ginzburg (1926–2020) was a Professor Emeritus of Computer Science. He served as Vice President of the Technion Institute, and President of the Open University of Israel

In mathematics, zero-sum Ramsey theory or zero-sum theory is a branch of combinatorics. It deals with problems of the following kind: given a combinatorial structure whose elements are assigned different weights, one seeks for conditions that guarantee the existence of certain substructure whose weights of its elements sum up to zero. It combines tools from number theory, algebra, linear algebra, graph theory, discrete analysis, and other branches of mathematics.

Arie Bialostocki is an Israeli American mathematician with expertise and contributions in discrete mathematics and finite groups.

References

  1. Erdős, Paul; Ginzburg, A.; Ziv, A. (1961). "Theorem in the additive number theory". Bull. Res. Council Israel. 10F: 41–43. Zbl   0063.00009.
  2. Nathanson (1996) p.48
  3. Reiher, Christian (2007), "On Kemnitz' conjecture concerning lattice-points in the plane", The Ramanujan Journal, 13 (1–3): 333–337, arXiv: 1603.06161 , doi:10.1007/s11139-006-0256-y, S2CID   119600313, Zbl   1126.11011 .
  4. Grynkiewicz, D. J. (2006), "A Weighted Erdős-Ginzburg-Ziv Theorem" (PDF), Combinatorica, 26 (4): 445–453, doi:10.1007/s00493-006-0025-y, S2CID   33448594, Zbl   1121.11018 .

Further reading