Zeroisation

Last updated
"Emergency Erase" (AVARIINOE STIRANIE) switch, zeroize in NSA parlance, on a cryptographic device of the Soviet Strategic Rocket Forces RVSN IMG 1671.JPG
"Emergency Erase" (АВАРИЙНОЕ СТИРАНИЕ) switch, zeroize in NSA parlance, on a cryptographic device of the Soviet Strategic Rocket Forces

In cryptography, zeroisation (also spelled zeroization) is the practice of erasing sensitive parameters (electronically stored data, cryptographic keys, and critical security parameters) from a cryptographic module to prevent their disclosure if the equipment is captured. This is generally accomplished by altering or deleting the contents to prevent recovery of the data. [1]

Contents

Mechanical

When encryption was performed by mechanical devices, this would often mean changing all the machine's settings to some fixed, meaningless value, such as zero. On machines with letter settings rather than numerals, the letter 'O' was often used instead. Some machines had a button or lever for performing this process in a single step. Zeroisation would typically be performed at the end of an encryption session to prevent accidental disclosure of the keys, or immediately when there was a risk of capture by an adversary. [2]

Software

In modern software based cryptographic modules, zeroisation is made considerably more complex by issues such as virtual memory, compiler optimisations [3] and use of flash memory. [4] Also, zeroisation may need to be applied not only to the key, but also to a plaintext and some intermediate values. A cryptographic software developer must have an intimate understanding of memory management in a machine, and be prepared to zeroise data whenever a sensitive device might move outside the security boundary. Typically this will involve overwriting the data with zeroes, but in the case of some types of non-volatile storage the process is much more complex; see data remanence .

As well as zeroising data due to memory management, software designers consider performing zeroisation:

Informally, software developers may also use zeroise to mean any overwriting of sensitive data, not necessarily of a cryptographic nature.

Tamper resistant hardware

In tamper resistant hardware, automatic zeroisation may be initiated when tampering is detected. Such hardware may be rated for cold zeroisation, the ability to zeroise itself without its normal power supply enabled.

Standards

Standards for zeroisation are specified in ANSI X9.17 and FIPS 140-2.

Related Research Articles

Advanced Encryption Standard Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

Encryption Process of converting plaintext to ciphertext

In cryptography, encryption is the process of encoding information. This process converts the original representation of the information, known as plaintext, into an alternative form known as ciphertext. Ideally, only authorized parties can decipher a ciphertext back to plaintext and access the original information. Encryption does not itself prevent interference but denies the intelligible content to a would-be interceptor.

Trusted Computing (TC) is a technology developed and promoted by the Trusted Computing Group. The term is taken from the field of trusted systems and has a specialized meaning that is distinct from the field of Confidential Computing. The core idea of trusted computing is to give hardware manufacturers control over what software does and does not run on a system by refusing to run unsigned software. With Trusted Computing, the computer will consistently behave in expected ways, and those behaviors will be enforced by computer hardware and software. Enforcing this behavior is achieved by loading the hardware with a unique encryption key that is inaccessible to the rest of the system and the owner.

Secure cryptoprocessor Device used for encryption

A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.

OpenSSL Open-source implementation of the SSL and TLS protocols

OpenSSL is a software library for applications that secure communications over computer networks against eavesdropping or need to identify the party at the other end. It is widely used by Internet servers, including the majority of HTTPS websites.

The Federal Information Processing Standard Publication 140-2,, is a U.S. government computer security standard used to approve cryptographic modules. The title is Security Requirements for Cryptographic Modules. Initial publication was on May 25, 2001, and was last updated December 3, 2002.

Data remanence is the residual representation of digital data that remains even after attempts have been made to remove or erase the data. This residue may result from data being left intact by a nominal file deletion operation, by reformatting of storage media that does not remove data previously written to the media, or through physical properties of the storage media that allow previously written data to be recovered. Data remanence may make inadvertent disclosure of sensitive information possible should the storage media be released into an uncontrolled environment.

The 140 series of Federal Information Processing Standards (FIPS) are U.S. government computer security standards that specify requirements for cryptography modules.

Hardware security module Physical computing device

A hardware security module (HSM) is a physical computing device that safeguards and manages digital keys, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server. A hardware security module contains one or more secure cryptoprocessor chips.

Disk encryption is a technology which protects information by converting it into unreadable code that cannot be deciphered easily by unauthorized people. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage.

There are a number of security and safety features new to Windows Vista, most of which are not available in any prior Microsoft Windows operating system release.

In computer security, a cold boot attack is a type of side channel attack in which an attacker with physical access to a computer performs a memory dump of a computer's random-access memory (RAM) by performing a hard reset of the target machine. Typically, cold boot attacks are used for retrieving encryption keys from a running operating system for malicious or criminal investigative reasons. The attack relies on the data remanence property of DRAM and SRAM to retrieve memory contents that remain readable in the seconds to minutes following a power switch-off.

Hardware-based full disk encryption (FDE) is available from many hard disk drive (HDD/SSD) vendors, including: ClevX, Hitachi, Integral Memory, iStorage Limited, Micron, Seagate Technology, Samsung, Toshiba, Viasat UK, Western Digital. The symmetric encryption key is maintained independently from the computer's CPU, thus allowing the complete data store to be encrypted and removing computer memory as a potential attack vector.

Data erasure is a software-based method of overwriting the data that aims to completely destroy all electronic data residing on a hard disk drive or other digital media by using zeros and ones to overwrite data onto all sectors of the device in an irreversible process. By overwriting the data on the storage device, the data is rendered irrecoverable and achieves data sanitization.

A hardware restriction is low-level protection enforced by electronic components. The hardware restriction scheme may protect against physical or malware attacks or complement a digital rights management system implemented in software. Some examples of hardware restriction information appliances are video game consoles, smartphones, tablet computers, Macintosh computers and personal computers that implement secure boot.

Arxan Technologies

Digital Ai is an American technology company specializing in anti-tamper and digital rights management (DRM) for Internet of Things (IoT), mobile, and other applications. Arxan's security products are used to prevent tampering or reverse engineering of software, thus preventing access or modifications to said software that are deemed undesirable by its developer. The company reports that applications secured by it are running on over 500 million devices. Its products are used across a range of industries, including mobile payments & banking, automotive, healthcare and gaming.

Hardware-based encryption Use of computer hardware to assist software in the process of data encryption

Hardware-based encryption is the use of computer hardware to assist software, or sometimes replace software, in the process of data encryption. Typically, this is implemented as part of the processor's instruction set. For example, the AES encryption algorithm can be implemented using the AES instruction set on the ubiquitous x86 architecture. Such instructions also exist on the ARM architecture. However, more unusual systems exist where the cryptography module is separate from the central processor, instead being implemented as a coprocessor, in particular a secure cryptoprocessor or cryptographic accelerator, of which an example is the IBM 4758, or its successor, the IBM 4764. Hardware implementations can be faster and less prone to exploitation than traditional software implementations, and furthermore can be protected against tampering.

The IBM 4767 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.

The IBM 4768 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.

The IBM 4769 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.

References

  1. http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf [ bare URL PDF ]
  2. Link 16 Joint Key Management Plan, CJCSM 6520.01A, 2011, Section 6b(4)(b)
  3. "MEMSET". Archived from the original on February 21, 2013. Retrieved March 21, 2013.
  4. "Archived copy". Archived from the original on March 7, 2013. Retrieved March 21, 2013.{{cite web}}: CS1 maint: archived copy as title (link)