ZnuABC

Last updated
High-affinity zinc uptake system protein ZnuA
2OSV with zinc site.png
The structure of ZnuA bound to zinc (gray sphere), with coordinating amino acids shown in white. From PDB: 2OSV . [1]
Identifiers
Organism Escherichia coli
SymbolZnuA
PDB 2OSV
UniProt P39172
Search for
Structures Swiss-model
Domains InterPro
High-affinity zinc uptake system membrane protein ZnuB
Identifiers
Organism Escherichia coli
SymbolZnuB
UniProt P39832
Search for
Structures Swiss-model
Domains InterPro
High-affinity zinc uptake system membrane protein ZnuC
Identifiers
Organism Escherichia coli
SymbolZnuC
UniProt P0A9X1
Search for
Structures Swiss-model
Domains InterPro

ZnuABC is a high-affinity transporter specialized for transporting zinc ions as part of a system for metal ion homeostasis in bacteria. The complex is a member of the ATP-binding cassette (ABC) transporter protein family. The transporter contains three protein components: [2] [3]

The expression of ZnuABC is regulated by the zinc uptake regulator (Zur) protein and is induced by conditions of zinc starvation. Because zinc is often a limiting factor in bacterial infections, some pathogenic bacteria are heavily dependent on ZnuABC to scavenge zinc from the environment in an animal host. [4]

The periplasmic protein ZnuA interacts with ZinT, another component of the regulon controlled by Zur, which is also involved in periplasmic zinc homeostasis. [4] [5] [6] [7]

Related Research Articles

<span class="mw-page-title-main">ATP-binding cassette transporter</span> Gene family

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

Magnesium transporters are proteins that transport magnesium across the cell membrane. All forms of life require magnesium, yet the molecular mechanisms of Mg2+ uptake from the environment and the distribution of this vital element within the organism are only slowly being elucidated.

The galactose permease or GalP found in Escherichia coli is an integral membrane protein involved in the transport of monosaccharides, primarily hexoses, for utilization by E. coli in glycolysis and other metabolic and catabolic pathways (3,4). It is a member of the Major Facilitator Super Family (MFS) and is homologue of the human GLUT1 transporter (4). Below you will find descriptions of the structure, specificity, effects on homeostasis, expression, and regulation of GalP along with examples of several of its homologues.

<span class="mw-page-title-main">Maltose-binding protein</span>

Maltose-binding protein (MBP) is a part of the maltose/maltodextrin system of Escherichia coli, which is responsible for the uptake and efficient catabolism of maltodextrins. It is a complex regulatory and transport system involving many proteins and protein complexes. MBP has an approximate molecular mass of 42.5 kilodaltons.

Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is designated as a transfer from “side 1” to “side 2” because the designations “in” and “out”, which had previously been used, can be ambiguous. Translocases are the most common secretion system in Gram positive bacteria.

In enzymology, an iron-chelate-transporting ATPase (EC 3.6.3.34) is an enzyme that catalyzes the chemical reaction

In enzymology, a vitamin B12-transporting ATPase (EC 3.6.3.33) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Outer membrane receptor</span>

Outer membrane receptors, also known as TonB-dependent receptors, are a family of beta barrel proteins named for their localization in the outer membrane of gram-negative bacteria. TonB complexes sense signals from the outside of bacterial cells and transmit them into the cytoplasm, leading to transcriptional activation of target genes. TonB-dependent receptors in gram-negative bacteria are associated with the uptake and transport of large substrates such as iron siderophore complexes and vitamin B12.

<span class="mw-page-title-main">Ferrichrome</span> Chemical compound

Ferrichrome is a cyclic hexa-peptide that forms a complex with iron atoms. It is a siderophore composed of three glycine and three modified ornithine residues with hydroxamate groups [-N(OH)C(=O)C-]. The 6 oxygen atoms from the three hydroxamate groups bind Fe(III) in near perfect octahedral coordination.

Tripartite ATP-independent periplasmic transporters are a large family of solute transporters found in bacteria and archaea, but not in eukaryotes, that appear to be specific for the uptake of organic acids or related molecules containing a carboxylate or sulfonate group. They are unique in that they utilize a substrate binding protein (SBP) in combination with a secondary transporter.

<span class="mw-page-title-main">Ferric uptake regulator family</span>

In molecular biology, the ferric uptake regulator family is a family of bacterial proteins involved in regulating metal ion uptake and in metal homeostasis. The family is named for its founding member, known as the ferric uptake regulator or ferric uptake regulatory protein (Fur). Fur proteins are responsible for controlling the intracellular concentration of iron in many bacteria. Iron is essential for most organisms, but its concentration must be carefully managed over a wide range of environmental conditions; high concentrations can be toxic due to the formation of reactive oxygen species.

Cation diffusion facilitators (CDFs) are transmembrane proteins that provide tolerance of cells to divalent metal ions, such as cadmium, zinc, and cobalt. These proteins are considered to be efflux pumps that remove these divalent metal ions from cells. However, some members of the CDF superfamily are implicated in ion uptake. All members of the CDF family possess six putative transmembrane spanners with strongest conservation in the four N-terminal spanners. The Cation Diffusion Facilitator (CDF) Superfamily includes the following families:

<span class="mw-page-title-main">ZinT protein domain</span> Family of protein domains found in prokaryotes

In molecular biology, ZinT is a family of protein domains found in prokaryotes. The domain contains a single binding site that can accommodate a divalent cation, with a geometry suggestive of zinc binding. This family was first thought to be part of the bacterial response to a toxic heavy metal cadmium by binding to the metal to ensure its elimination; however, more recent work has suggested a role in zinc homeostasis.

The nik operon is an operon required for uptake of nickel ions into the cell. It is present in many bacteria, but has been extensively studied in Helicobacter pylori. Nickel is an essential nutrient for many microorganisms, where it participates in a variety of cellular processes. However, excessive levels of nickel ions in cell can be fatal to the cell. Nickel ion concentration in the cell is regulated through the nik operon.

The potassium (K+) uptake permease (KUP) family (TC# 2.A.72) is a member of the APC superfamily of secondary carriers. Proteins of the KUP/HAK/KT family include the KUP (TrkD) protein of E. coli and homologues in both Gram-positive and Gram-negative bacteria. High affinity (20 μM) K+ uptake systems (Hak1, TC# 2.A.72.2.1) of the yeast Debaryomyces occidentalis as well as the fungus, Neurospora crassa, and several homologues in plants have been characterized. Arabidopsis thaliana and other plants possess multiple KUP family paralogues. While many plant proteins cluster tightly together, the Hak1 proteins from yeast as well as the two Gram-positive and Gram-negative bacterial proteins are distantly related on the phylogenetic tree for the KUP family. All currently classified members of the KUP family can be found in the Transporter Classification Database.

<span class="mw-page-title-main">Zinc uptake regulator</span> Bacterial gene

The zinc uptake regulator (Zur) gene is a bacterial gene that codes for a transcription factor protein involved in zinc homeostasis. The protein is a member of the ferric uptake regulator family and binds zinc with high affinity. It typically functions as a repressor of zinc uptake proteins via binding to characteristic promoter DNA sequences in a dimer-of-dimers arrangement that creates strong cooperativity. Under conditions of zinc deficiency, the protein undergoes a conformational change that prevents DNA binding, thereby lifting the repression and causing zinc uptake genes such as ZinT and the ZnuABC zinc transporter to be expressed.

The iron/lead transporter (ILT) family is a family of transmembrane proteins within the lysine exporter (LysE) superfamily. The ILT family includes two subfamilies, the iron-transporting (OFeT) family and the lead-transporting (PbrT) family. A representative list of the proteins belonging to these subfamilies of the ILT family can be found in the Transporter Classification Database.

The C4-dicarboxylate uptake family or Dcu family is a family of transmembrane ion transporters found in bacteria. Their function is to exchange dicarboxylates such as aspartate, malate, fumarate and succinate.

Arsenite resistance (Ars) efflux pumps of bacteria may consist of two proteins, ArsB and ArsA, or of one protein. ArsA proteins have two ATP binding domains and probably arose by a tandem gene duplication event. ArsB proteins all possess twelve transmembrane spanners and may also have arisen by a tandem gene duplication event. Structurally, the Ars pumps resemble ABC-type efflux pumps, but there is no significant sequence similarity between the Ars and ABC pumps. When only ArsB is present, the system operates by a pmf-dependent mechanism, and consequently belongs in TC subclass 2.A. When ArsA is also present, ATP hydrolysis drives efflux, and consequently the system belongs in TC subclass 3.A. ArsB therefore appears twice in the TC system but ArsA appears only once. These pumps actively expel both arsenite and antimonite.

<span class="mw-page-title-main">Resistance-nodulation-cell division superfamily</span>

Resistance-nodulation-division (RND) family transporters are a category of bacterial efflux pumps, especially identified in Gram-negative bacteria and located in the cytoplasmic membrane, that actively transport substrates. The RND superfamily includes seven families: the heavy metal efflux (HME), the hydrophobe/amphiphile efflux-1, the nodulation factor exporter family (NFE), the SecDF protein-secretion accessory protein family, the hydrophobe/amphiphile efflux-2 family, the eukaryotic sterol homeostasis family, and the hydrophobe/amphiphile efflux-3 family. These RND systems are involved in maintaining homeostasis of the cell, removal of toxic compounds, and export of virulence determinants. They have a broad substrate spectrum and can lead to the diminished activity of unrelated drug classes if over-expressed. The first reports of drug resistant bacterial infections were reported in the 1940s after the first mass production of antibiotics. Most of the RND superfamily transport systems are made of large polypeptide chains. RND proteins exist primarily in gram-negative bacteria but can also be found in gram-positive bacteria, archaea, and eukaryotes.

References

  1. Li H, Jogl G (May 2007). "Crystal structure of the zinc-binding transport protein ZnuA from Escherichia coli reveals an unexpected variation in metal coordination". Journal of Molecular Biology. 368 (5): 1358–66. doi:10.1016/j.jmb.2007.02.107. PMID   17399739.
  2. Patzer SI, Hantke K (June 1998). "The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli". Molecular Microbiology. 28 (6): 1199–210. doi: 10.1046/j.1365-2958.1998.00883.x . PMID   9680209.
  3. Yatsunyk LA, Easton JA, Kim LR, Sugarbaker SA, Bennett B, Breece RM, Vorontsov II, Tierney DL, Crowder MW, Rosenzweig AC (February 2008). "Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli". Journal of Biological Inorganic Chemistry. 13 (2): 271–88. doi:10.1007/s00775-007-0320-0. PMC   2630496 . PMID   18027003.
  4. 1 2 Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L, Battistoni A (February 2011). "Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells". BMC Microbiology. 11: 36. doi: 10.1186/1471-2180-11-36 . PMC   3053223 . PMID   21338480.
  5. Ilari A, Alaleona F, Tria G, Petrarca P, Battistoni A, Zamparelli C, Verzili D, Falconi M, Chiancone E (January 2014). "The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc" (PDF). Biochimica et Biophysica Acta (BBA) - General Subjects. 1840 (1): 535–44. doi:10.1016/j.bbagen.2013.10.010. hdl: 2108/89370 . PMID   24128931.
  6. Petrarca P, Ammendola S, Pasquali P, Battistoni A (March 2010). "The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage". Journal of Bacteriology. 192 (6): 1553–64. doi:10.1128/jb.01310-09. PMC   2832539 . PMID   20097857.
  7. Blindauer CA (March 2015). "Advances in the molecular understanding of biological zinc transport" (PDF). Chemical Communications. 51 (22): 4544–63. doi: 10.1039/c4cc10174j . PMID   25627157.