Zoll surface

Last updated
A Zoll surface discovered by Zoll in 1903. A closed geodesic is pictured in red. Surfacedezoll.png
A Zoll surface discovered by Zoll in 1903. A closed geodesic is pictured in red.

In mathematics, particularly in differential geometry, a Zoll surface, named after Otto Zoll, is a surface homeomorphic to the 2-sphere, equipped with a Riemannian metric all of whose geodesics are closed and of equal length. While the usual unit-sphere metric on S2 obviously has this property, it also has an infinite-dimensional family of geometrically distinct deformations that are still Zoll surfaces. In particular, most Zoll surfaces do not have constant curvature.

Contents

Zoll, a student of David Hilbert, discovered the first non-trivial examples.

See also

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

<span class="mw-page-title-main">Mikhael Gromov (mathematician)</span> Russian-French mathematician

Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry. In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry, with those axioms of congruence that involve the concept of the angle dropped, and `triangle inequality', regarded as an axiom, added.

In mathematics, Dehn's lemma asserts that a piecewise-linear map of a disk into a 3-manifold, with the map's singularity set in the disk's interior, implies the existence of another piecewise-linear map of the disk which is an embedding and is identical to the original on the boundary of the disk.

In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949. Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.

In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.

In the mathematical field of integral geometry, the Funk transform is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904). It is closely related to the Radon transform. The original motivation for studying the Funk transform was to describe Zoll metrics on the sphere.

<span class="mw-page-title-main">Victor Bangert</span> German mathematician

Victor Bangert is Professor of Mathematics at the Mathematisches Institut in Freiburg, Germany. His main interests are differential geometry and dynamical systems theory. He specialises in the theory of closed geodesics, wherein one of his significant results, combined with another one due to John Franks, implies that every Riemannian 2-sphere possesses infinitely many closed geodesics. He also made important contributions to Aubry–Mather theory.

<span class="mw-page-title-main">Carolyn S. Gordon</span> American mathematician

Carolyn S. Gordon is a mathematician and Benjamin Cheney Professor of Mathematics at Dartmouth College. She is most well known for giving a negative answer to the question "Can you hear the shape of a drum?" in her work with David Webb and Scott A. Wolpert. She is a Chauvenet Prize winner and a 2010 Noether Lecturer.

The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.

Paul Georg Funk was an Austrian mathematician who introduced the Funk transform and who worked on the calculus of variations.

In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics. The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics.

Martin George Scharlemann is an American topologist who is a professor at the University of California, Santa Barbara. He obtained his Ph.D. from the University of California, Berkeley under the guidance of Robion Kirby in 1974.

References