160-minute solar cycle

Last updated

The 160-minute solar cycle was an apparent periodic oscillation in the solar surface which was observed in a number of early sets of data collected for helioseismology.

Helioseismology inferring the internal structure of the Sun from the propagation of seismic waves

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realised that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes, and local helioseismology, which studies all the waves propagating at the Sun's surface.

Contents

The presence of a 160 minute cycle in the Sun is not substantiated by contemporary solar observations, and the historical signal is considered by mainstream scientists to occur as the redistribution of power from the diurnal cycle as a result of the observation window and atmospheric extinction.

Sun Star at the centre of the Solar System

The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers, or 109 times that of Earth, and its mass is about 330,000 times that of Earth. It accounts for about 99.86% of the total mass of the Solar System. Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

History

The birth of helioseismology occurred in 1976 with the publications of papers from Brookes, Isaak and van der Raay [1] and Severny, Kotov and Tsap, [2] both of which reported upon the observation of a 160-minute solar oscillation with an amplitude of approximately two metres per second.

It was rapidly realised that this frequency corresponded to one-ninth of a day, and therefore the authenticity of this signal was in some doubt. If a non-sinusoidal oscillation is present in a time-series then power will be seen in a periodogram at not only the frequency of the oscillation, but also harmonics at integer multiples of this frequency. A re-analysis of data obtained over the period of 1974–1976 by Brookes et al. [3] showed that the evidence for a stable, phase-coherent 160 minute oscillation at a constant amplitude was far from conclusive. Although the signal could be detected the amplitude appeared variable and was lower than first reported.

In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods. It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions. FFT spectrum analyzers are also implemented as a time-sequence of periodograms.

A re-affirmation of the 160 minute signal was obtained by analysis of data from groups in Crimea and Stanford over a long period of time. It was found that the phase showed a steady drift, indicative that the frequency being used in analysis differed slightly from that in the data. This implied that a period of 160.01 minutes [4] produced a better fit to the data. Evidence also emerged that multiple sets of observations were phase-coherent. These facts contributed to impressions that the origin of the observed signal was stellar and not terrestrial in origin.

In 1989 as higher-quality multiple-year datasets from a single site became available it was shown by Elsworth et al. that the period of the 160 minute signal was indeed 160.00 minutes, and the amplitude was dependent upon both the length and quality of data obtained in a season, with the signal more prominent at time where atmospheric condition were worse. The group were able to demonstrate that the signal may be simulated by a slightly distorted diurnal sine-wave such as may be obtained by differential atmospheric extinction. [5]

Although claims of the presence of a 160-minute period in the Sun were still presented by Kotov et al. in 1990, [6] and 1991, [7] the mainstream scientific establishment had moved on.

Contemporary observations

There are currently two solar-observation networks, the BiSON and GONG networks which consist of a global network of stations, as well as space based instruments such as the GOLF instrument aboard the SOHO spacecraft. These are able to keep the Sun under near-continuous observation, and so largely eliminate the influence of diurnal signals. Data from these instruments shows no oscillation at 160 minutes.

Related Research Articles

Ionosphere The ionized part of Earths upper atmosphere

The ionosphere is the ionized part of Earth's upper atmosphere, from about 60 km (37 mi) to 1,000 km (620 mi) altitude, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth.

Oscillation repetitive variation of some measure about a central value

Oscillation is the repetitive variation, typically in time, of some measure about a central value or between two or more different states. The term vibration is precisely used to describe mechanical oscillation. Familiar examples of oscillation include a swinging pendulum and alternating current.

Sunspot temporary phenomena on the photosphere of the Sun that appear visibly as dark spots compared to surrounding region

Sunspots are temporary phenomena on the Sun's photosphere that appear as spots darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux that inhibit convection. Sunspots usually appear in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle.

Tide The periodic change of sea levels caused by the gravitational and inertial effects of the Moon, the Sun and the rotation of the Earth

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth.

Variable star star whose brightness as seen from Earth fluctuates

A variable star is a star whose brightness as seen from Earth fluctuates.

Solar cycle periodic change in the Suns activity

The solar cycle or solar magnetic activity cycle is the nearly periodic 11-year change in the Sun's activity and appearance.

Solar tower (astronomy)

The solar updraft tower (SUT) is a design concept for a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines, placed in the chimney updraft or around the chimney base, to produce electricity.

Schumann resonances peaks in the Earths electromagnetic field spectrum, named for Winifred Otto Schumann

The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, generated and excited by lightning discharges in the cavity formed by the Earth's surface and the ionosphere.

Asteroseismology study of oscillations in stars

Asteroseismology or astroseismology is the study of oscillations in stars. Because a star's different oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature. Asteroseismology is closely related to helioseismology, the study of stellar oscillations specifically in the Sun. Though both are based on the same underlying physics, more and qualitatively different information is available for the Sun because its surface can be resolved.

Atmospheric physics The application of physics to the study of the atmosphere

Atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, chemical models, radiation budget, and energy transfer processes in the atmosphere. In order to model weather systems, atmospheric physicists employ elements of scattering theory, wave propagation models, cloud physics, statistical mechanics and spatial statistics which are highly mathematical and related to physics. It has close links to meteorology and climatology and also covers the design and construction of instruments for studying the atmosphere and the interpretation of the data they provide, including remote sensing instruments. At the dawn of the space age and the introduction of sounding rockets, aeronomy became a subdiscipline concerning the upper layers of the atmosphere, where dissociation and ionization are important.

Solar rotation the pattern of rotation of components of the Sun

Solar rotation varies with latitude. The Sun is not a solid body, but is composed of a gaseous plasma. Different latitudes rotate at different periods. The source of this differential rotation is an area of current research in solar astronomy. The rate of surface rotation is observed to be the fastest at the equator and to decrease as latitude increases. The solar rotation period is 24.47 days at the equator and almost 38 days at the poles.

The Spörer Minimum is a hypothesized 90-year span of low solar activity, from about 1460 until 1550, which was identified and named by John A. Eddy in a landmark 1976 paper published in Science titled "The Maunder Minimum". It occurred before sunspots had been directly observed and was discovered instead by analysis of the proportion of carbon-14 in tree rings, which is strongly correlated with solar activity. It is named for the German astronomer Gustav Spörer.

Frequency separation is a term used in Helio and Asteroseismology for the spacing in frequency between adjacent modes of oscillation having the same angular degree (l) but different radial order (n).

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

Solar-like oscillations are oscillations in distant stars that are excited in the same way as those in the Sun, namely by turbulent convection in its outer layers. Stars that show solar-like oscillations are called solar-like oscillators. The oscillations are standing pressure and mixed pressure-gravity modes that are excited over a range in frequency, with the amplitudes roughly following a bell-shaped distribution. Unlike opacity-driven oscillators, all the modes in the frequency range are excited, making the oscillations relatively easy to identify. The surface convection also damps the modes, and each is well-approximated in frequency space by a Lorentzian curve, the width of which corresponds to the lifetime of the mode: the faster it decays, the broader is the Lorentzian. All stars with surface convection zones are expected to show solar-like oscillations, including cool main-sequence stars, subgiants and red giants. Because of the small amplitudes of the oscillations, their study has advanced tremendously thanks to space-based missions.

Martin Arthur Pomerantz was an American physicist who served as Director of the Bartol Research Institute and who had been a leader in developing Antarctic astronomy. When the astronomical observatory at the United States Amundsen–Scott South Pole Station was opened in 1995, it was named the Martin A. Pomerantz Observatory (MAPO) in his honor. Pomerantz published his scientific autobiography, Astronomy on Ice, in 2004.

Coronal seismology is a technique of studying the plasma of the Sun's corona with the use of magnetohydrodynamic (MHD) waves and oscillations. Magnetohydrodynamics studies the dynamics of electrically conducting fluids - in this case the fluid is the coronal plasma. Observed properties of the waves (e.g. period, wavelength, amplitude, temporal and spatial signatures, characteristic scenarios of the wave evolution, combined with a theoretical modelling of the wave phenomena, may reflect physical parameters of the corona which are not accessible in situ, such as the coronal magnetic field strength and Alfvén velocity and coronal dissipative coefficients. Originally, the method of MHD coronal seismology was suggested by Y. Uchida in 1970 for propagating waves, and B. Roberts et al. in 1984 for standing waves, but was not practically applied until the late 90s due to a lack of necessary observational resolution. Philosophically, coronal seismology is similar to the Earth's seismology, helioseismology, and MHD spectroscopy of laboratory plasma devices. In all these approaches, waves of various kind are used to probe a medium.

Rapidly oscillating Ap stars are a subtype of the Ap star class that exhibit short-timescale rapid photometric or radial velocity variations. The known periods range between 5 and 23 minutes. They lie in the δ Scuti instability strip on the main sequence.

Stellar pulsation

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

References

  1. "Observation of free oscillations of the sun", Nature, vol. 259, January 15, 1976, pp. 92–95
  2. "Observations of solar pulsations", Nature, vol. 259, January 15, 1976, pp. 87–89
  3. The search for solar oscillations, 1974 to 1976, Royal Astronomical Society, Monthly Notices, vol. 184, September 1978, pp. 759–767
  4. Further evidence of solar oscillations with a period of 160 minutes, Astrophysical Journal, Part 2 – Letters to the Editor, vol. 237, May 1, 1980, pp. L97, L98
  5. The 160 minute solar oscillation – an artifact? Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 338, March 1, 1989, pp. 557–562
  6. 160 minute solar variations and the 22 year cycle, Solar Physics (ISSN 0038-0938), vol. 128, July 1990, p. 269–280
  7. 160-min pulsation of the sun – New observational results, Solar Physics (ISSN 0038-0938), vol. 133, May 1991, p. 95–102