ABCE1

Last updated
ABCE1
Identifiers
Aliases ABCE1 , ABC38, OABP, RLI, RNASEL1, RNASELI, RNS4I, ATP binding cassette subfamily E member 1, RLI1
External IDs OMIM: 601213 MGI: 1195458 HomoloGene: 2205 GeneCards: ABCE1
Gene location (Human)
Ideogram human chromosome 4.svg
Chr. Chromosome 4 (human) [1]
Human chromosome 4 ideogram.svg
HSR 1996 II 3.5e.svg
Red rectangle 2x18.png
Band 4q31.21Start145,098,288 bp [1]
End145,129,524 bp [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002940
NM_001040876

NM_015751

RefSeq (protein)

NP_001035809
NP_002931

NP_056566

Location (UCSC) Chr 4: 145.1 – 145.13 Mb Chr 8: 79.68 – 79.71 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATP-binding cassette sub-family E member 1 (ABCE1) also known as RNase L inhibitor (RLI) is an enzyme that in humans is encoded by the ABCE1 gene.

Contents

ABCE1 is an ATPase that is a member of the ATP-binding cassette (ABC) transporters superfamily and OABP subfamily. [5]

ABCE1 inhibits the action of ribonuclease L. Ribonuclease L normally binds to 2-5A (5'-phosphorylated 2',5'-linked oligoadenylates) and inhibits the interferon-regulated 2-5A/RNase L pathway, which is used by viruses. ABCE1 heterodimerize with ribonuclease L and prevents its interaction with 2-5A, antagonizing the anti-viral properties of ribonuclease L, [6] and allow the virus to synthesize viral proteins. It has also been implicated to have an effect in tumor cell proliferation and antiapoptosis. [7]

ABCE1 is an essential and highly conserved protein that is required for both eukaryotic translation initiation as well as ribosome biogenesis. The most studied homologues are Rli1p in yeast and Pixie in Drosophila .

Structure

RLI is a 68 kDa cytoplasmic protein found in most eukaryota and archae. Since the crystal structure for RLI has not yet been determined, all that is known has been inferred from protein sequencing. The protein sequences between species is very well conserved, for example Pixie and yeast Rli1p are 66% identical, and Rli1p and human RLI are 67% identical.

RLI belongs to the ABCE family of ATP-binding cassette (ABC) proteins. ABC proteins typically also contain a transmembrane region, and utilize ATP to transport substrates across a membrane, however RLI is unique in that it is a soluble protein that contains ABC domains. RLI has two C-terminal ABC domains; upon binding ATP they form a characteristic "ATP-sandwich," with two ATP molecules sandwiched between the two dimerized ABC domains. Hydrolysis of ATP allows the dimer to dissociate in a fully reversible process. Incubation of the protein with a non-hydrolyzable ATP analogue or a mutation of the ABC domain causes a complete loss of protein function.

RLI also has a cysteine-rich N-terminal region that is predicted to tightly bind two [4Fe-4S] clusters. Mutation of this region, or depletion of available Fe/S clusters, renders the protein unable to function, and loss of cell viability, making RLI the only known essential cytoplasmic protein dependent on Fe/S cluster biosynthesis in the mitochondria. The function of the Fe/S clusters is unknown, although it has been suggested that they regulate the ABC domains in response to a change in the redox environment, for example in the presence of reactive oxygen species. [8]

Function

RLI and its homologues in yeast and Drosophila have two major identified functions: translation initiation and ribosome biogenesis. In addition, human RLI is a known inhibitor of RNAse L. This was the first activity identified and the source of its name (RNAse LInhibitor).

Translation Initiation

Translation initiation is an essential process required for proper protein expression and cell viability. Rli1p has been found to co-purify with eukaryotic initiation factors, specifically eIF2, eIF5, and eIF3, as well as the 40S subunit of the ribosome. These initiation factors must associate with the ribosome in stoichiometric proportions, while Rli1p is required in catalytic amounts. The following mechanism for the process has been proposed: One ABC domain binds the 40S subunit, while the other binds an initiation factor. Binding of ATP allows for dimerization, which subsequently brings the initiation factor and ribosomal subunit in close enough contact to associate. ATP hydrolysis releases the two substrates and allows the cycle to begin again. This model is similar to one that has been proposed for DNA repair enzymes with ABC domains, in which each domain binds either side of a broken piece of DNA, with hydrolysis allowing the pieces to be brought together and subsequently repaired. [9]

Ribosome recycling

Recycling is essential for ribosomes to become usable again after translating an mRNA or stalling. In both eukaryotes and archaea, ABCE1 is responsible for splitting a ribosome that has been bound to Pelota or its paralog eRF1. The exact movements leading to the split is not well understood. [10] [11]

Ribosome biogenesis

RLI and its homologues are also thought to play a role in ribosome biogenesis, nuclear export, or both. They have been found in the nucleus associated with the 40S and 60S subunits, as well as Hcr1p, a protein required for rRNA processing. It has been shown that the Fe/S clusters are necessary for ribosome biogenesis and/or nuclear export, although the exact mechanism is unknown.

RNAse inhibitor

Human RLI was first identified because of its ability to inhibit RNAse L, which plays a crucial role in antiviral activity in mammals. This cannot account for the conservation of the protein in all other organisms, since only mammals have the RNAse L system. It has been suggested that RLI in lower eukaryotes functions by inhibiting RNAses involved in ribosomal biosynthesis, thereby regulating the process. [12]

Role in mitochondria

The mitochondria's energetic and metabolic functions have been established to be non-essential for yeast cell viability. The only function that has been implicated in being necessary for survival is the biosynthesis of Fe/S clusters. RLI is the only known essential cytoplasmic Fe/S protein that is absolutely dependent on the mitochondrial Fe/S synthesis and export system for proper maturation. Rli1p is therefore a novel link between the mitochondria and ribosome function and biosynthesis, and therefore the viability of the cell.

Related Research Articles

Ribosome Intracellular organelle consisting of RNA and protein

Ribosomes are macromolecular machines, found within all living cells, that perform biological protein synthesis. Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to form polypeptide chains. Ribosomes consist of two major components: the small and large ribosomal subunits. Each subunit consists of one or more ribosomal RNA (rRNA) molecules and many ribosomal proteins. The ribosomes and associated molecules are also known as the translational apparatus.

Ribonuclease H

Ribonuclease H is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly all organisms, from bacteria to archaea to eukaryotes.

ATP-binding cassette transporter

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans.

Ribosomal RNA RNA component of the ribosome, essential for protein synthesis in all living organisms

Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the physical and mechanical factor of the ribosome that forces transfer RNA (tRNA) and messenger RNA (mRNA) to process and translate the latter into proteins. Ribosomal RNA is the predominant form of RNA found in most cells; it makes up about 80% of cellular RNA despite never being translated into proteins itself. Ribosomes are composed of approximately 60% rRNA and 40% ribosomal proteins by mass.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

Ribonuclease P

Ribonuclease P is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its function is to cleave off an extra, or precursor, sequence of RNA on tRNA molecules. Further, RNase P is one of two known multiple turnover ribozymes in nature, the discovery of which earned Sidney Altman and Thomas Cech the Nobel Prize in Chemistry in 1989: in the 1970s, Altman discovered the existence of precursor tRNA with flanking sequences and was the first to characterize RNase P and its activity in processing of the 5' leader sequence of precursor tRNA. Recent findings also reveal that RNase P has a new function. It has been shown that human nuclear RNase P is required for the normal and efficient transcription of various small noncoding RNAs, such as tRNA, 5S rRNA, SRP RNA and U6 snRNA genes, which are transcribed by RNA polymerase III, one of three major nuclear RNA polymerases in human cells.

Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis.

Ribosome biogenesis Cellular process

Ribosome biogenesis is the process of making ribosomes. In prokaryotes, this process takes place in the cytoplasm with the transcription of many ribosome gene operons. In eukaryotes, it takes place both in the cytoplasm and in the nucleolus. It involves the coordinated function of over 200 proteins in the synthesis and processing of the three prokaryotic or four eukaryotic rRNAs, as well as assembly of those rRNAs with the ribosomal proteins. Most of the ribosomal proteins fall into various energy-consuming enzyme families including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. About 60% of a cell's energy is spent on ribosome production and maintenance.

Iron-binding proteins are carrier proteins and metalloproteins that are important in iron metabolism and the immune response. Iron is required for life.

A ribosomal protein is any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in the cellular process of translation. A large part of the knowledge about these organic molecules has come from the study of E. coli ribosomes. All ribosomal proteins have been isolated and many specific antibodies have been produced. These, together with electronic microscopy and the use of certain reactives, have allowed for the determination of the topography of the proteins in the ribosome. E. coli, other bacteria and Archaea have a 30S small subunit and a 50S large subunit, whereas humans and yeasts have a 40S small subunit and a 60S large subunit. Equivalent subunits are frequently numbered differently between bacteria, Archaea, yeasts and humans. More recently, a near-complete (near)atomic picture of the ribosomal proteins is emerging from the latest high-resolution cryo-EM data.

Exosome complex Protein complex that degrades RNA

The exosome complex is a multi-protein intracellular complex capable of degrading various types of RNA molecules. Exosome complexes are found in both eukaryotic cells and archaea, while in bacteria a simpler complex called the degradosome carries out similar functions.

Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is designated as a transfer from “side 1” to “side 2” because the designations “in” and “out”, which had previously been used, can be ambiguous. Translocases are the most common secretion system in Gram positive bacteria.

Leader peptidase A (LepA) is an elongation factor that is thought to back-translocate on the ribosome during the translation of RNA to proteins in all prokaryotes and eukaryotes that have maintained functioning mitochondria. There are three primary elongation factors that are known to be the main contributors to facilitate elongation during protein synthesis; due to LepA's now acknowledged proofreading function in translation, scientists are now lobbying to have LepA renamed as EF-4.

RNase MRP

RNase MRP is an enzymatically active ribonucleoprotein with two distinct roles in eukaryotes. RNAse MRP stands for RNAse for mitochondrial RNA processing. In mitochondria it plays a direct role in the initiation of mitochondrial DNA replication. In the nucleus it is involved in precursor rRNA processing, where it cleaves the internal transcribed spacer 1 between 18S and 5.8S rRNAs. Despite distinct functions, RNase MRP has been shown to be evolutionarily related to RNase P. Like eukaryotic RNase P, RNase MRP is not catalytically active without associated protein subunits.

A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers to bacterial sequences, although internal ribosome entry sites (IRES) have been described in mRNAs of eukaryotic cells or viruses that infect eukaryotes. Ribosome recruitment in eukaryotes is generally mediated by the 5' cap present on eukaryotic mRNAs.

The degradosome is a multiprotein complex present in most bacteria that is involved in the processing of ribosomal RNA and the degradation of messenger RNA and is regulated by Non-coding RNA. It contains the proteins RNA helicase B, RNase E and Polynucleotide phosphorylase.

ATP-binding domain of ABC transporters

In molecular biology, ATP-binding domain of ABC transporters is a water-soluble domain of transmembrane ABC transporters.

Protein synthesis inhibitor

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

Ribonuclease E is a bacterial ribonuclease that participates in the processing of ribosomal RNA and the chemical degradation of bulk cellular RNA.

Archaeal initiation factors are proteins that are used during the translation step of protein synthesis in archaea. The principal functions these proteins perform include ribosome RNA/mRNA recognition, delivery of the initiator Met-tRNAiMet, methionine bound tRNAi, to the 40s ribosome, and proofreading of the initiation complex.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164163 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000058355 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "ABCE1 ATP-binding cassette, sub-family E (OABP), member 1 [ Homo sapiens ]" . Retrieved 14 March 2013.
  6. "P61221 (ABCE1_HUMAN)".
  7. Tian Y, Han X, Tian DL (October 2012). "The biological regulation of ABCE1". IUBMB Life. 64 (10): 795–800. doi: 10.1002/iub.1071 . PMID   23008114. S2CID   21490502.
  8. Andersen DS, Leevers SJ (May 2007). "The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation". The Journal of Biological Chemistry. 282 (20): 14752–60. doi: 10.1074/jbc.M701361200 . PMID   17392269.
  9. Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG (October 2004). "The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly". The Journal of Biological Chemistry. 279 (40): 42157–68. doi: 10.1074/jbc.M404502200 . PMID   15277527.
  10. Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, et al. (February 2012). "Structural basis of highly conserved ribosome recycling in eukaryotes and archaea". Nature. 482 (7386): 501–6. doi:10.1038/nature10829. PMC   6878762 . PMID   22358840.
  11. Hellen, Christopher U.T. (October 2018). "Translation Termination and Ribosome Recycling in Eukaryotes". Cold Spring Harbor Perspectives in Biology. 10 (10): a032656. doi:10.1101/cshperspect.a032656. PMC   6169810 . PMID   29735640.
  12. Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janáky T, et al. (February 2005). "Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria". The EMBO Journal. 24 (3): 589–98. doi:10.1038/sj.emboj.7600541. PMC   548650 . PMID   15660134.