Multidrug resistance-associated protein 2

Last updated
ABCC2
Identifiers
Aliases ABCC2 , ABC30, CMOAT, DJS, MRP2, cMRP, Multidrug resistance-associated protein 2, ATP binding cassette subfamily C member 2
External IDs OMIM: 601107 MGI: 1352447 HomoloGene: 68052 GeneCards: ABCC2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000392

NM_013806

RefSeq (protein)

NP_000383

NP_038834

Location (UCSC) Chr 10: 99.78 – 99.85 Mb Chr 19: 43.77 – 43.83 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Multidrug resistance-associated protein 2 (MRP2) also called canalicular multispecific organic anion transporter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 (ABCC2) is a protein that in humans is encoded by the ABCC2 gene. [5] [6] [7]

Contents

Function

MRP2 is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). More specifically, this protein is a member of the MRP subfamily, which is involved in multi-drug resistance. This protein is expressed in the canalicular (apical) part of the hepatocyte and functions in biliary transport. Substrates include anticancer drugs such as vinblastine; therefore, this protein appears to contribute to drug resistance in mammalian cells.

MRP2 is also expressed in the apical membrane of proximal renal tubule endothelial cells where they are involved in the excretion of small organic anions. [8]

MRP2 inhibitors

DrugClassIndicationsSourceStructure
probenecid uricosuric gout
hyperuricemia
[9] Probenecid.svg
furosemide loop diuretic heart failure
edema
[9] Furosemide.svg
ritonavir protease inhibitor antiretroviral [10] Ritonavir.svg
saquinavir protease inhibitor antiretroviral [11] Saquinavir structure.svg
lamivudine Nucleoside analog antiviral [12] Lamivudine.svg
abacavir Nucleoside analog antiretroviral [12] Abacavir.svg
emtricitabine Nucleoside analog antiviral [12] Emtricitabine skeletal.svg
efavirenz NNRTI antiretroviral [12] Efavirenz.svg
delavirdine NNRTI antiretroviral [12] Delavirdine.svg
nevirapine NNRTI antiretroviral [12] Nevirapine.svg
cidofovir nucleoside phosphonate antiviral [13] Cidofovir.svg
adefovir nucleoside phosphonate antiviral [11] Adefovir.svg
tenofovir nucleoside phosphonate antiviral [12] Tenofovir.svg

Clinical significance

Dubin–Johnson syndrome

Several different mutations in this gene have been observed in patients with Dubin–Johnson syndrome (DJS), an autosomal recessive disorder characterized by conjugated hyperbilirubinemia. [7] [14]

Iatrogenic Fanconi syndrome

Many negatively charged metabolic waste products are eliminated from the body by the kidneys. These organic anions are transported from the blood into the endothelial cells of the renal proximal tubules by the OAT1 transporter. From there, these waste molecules are transported into the lumen of the tubule by the MRP2 transporter. Many drugs are eliminated from the body by this mechanism. Some of these drugs pass through the MRP2 transporter slowly. This may cause a buildup of organic anions in the cytoplasm of the cells.

Drugs that inhibit the MRP2 transporter can cause a buildup of organic anions inside renal proximal tubule cells. If some of these organic anions inhibit mitochondrial DNA synthesis, it may cause iatrogenic Fanconi syndrome. The nucleoside phosphonate adefovir is a MRP2 inhibitor that has been linked to kidney disease. [15] Tenofovir [16] and cidofovir [17] are also nucleoside phosphonates that inhibit MRP2 and have been associated with Fanconi syndrome.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
IrinotecanPathway WP229.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
IrinotecanPathway WP229.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Irinotecan Pathway edit]]
Irinotecan Pathway edit
  1. The interactive pathway map can be edited at WikiPathways: "IrinotecanPathway_WP229".

See also

Related Research Articles

<span class="mw-page-title-main">Dubin–Johnson syndrome</span> Genetic liver disease

Dubin–Johnson syndrome is a rare, autosomal recessive, benign disorder that causes an isolated increase of conjugated bilirubin in the serum. Classically, the condition causes a black liver due to the deposition of a pigment similar to melanin. This condition is associated with a defect in the ability of hepatocytes to secrete conjugated bilirubin into the bile, and is similar to Rotor syndrome. It is usually asymptomatic, but may be diagnosed in early infancy based on laboratory tests. No treatment is usually needed.

<span class="mw-page-title-main">ABCC6</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 6 (MRP6) also known as ATP-binding cassette sub-family C member 6 (ABCC6) and multi-specific organic anion transporter E (MOAT-E) is a protein that in humans is encoded by the ABCC6 gene. The protein encoded by the ABCC6 gene is a member of the superfamily of ATP-binding cassette (ABC) transporters.

<span class="mw-page-title-main">Rotor syndrome</span> Medical condition

Rotor syndrome is a rare cause of mixed direct (conjugated) and indirect (unconjugated) hyperbilirubinemia, relatively benign, autosomal recessive bilirubin disorder characterized by non-hemolytic jaundice due to the chronic elevation of predominantly conjugated bilirubin.

<span class="mw-page-title-main">Efflux (microbiology)</span> Protein complexes that move compounds, generally toxic, out of bacterial cells

In microbiology, efflux is the moving of a variety of different compounds out of cells, such as antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and neurotransmitters. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that encode efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as active efflux, which is a vital part of xenobiotic metabolism. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media.

<span class="mw-page-title-main">ABCC4</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family C member 4 (ABCC4), also known as the multidrug resistance-associated protein 4 (MRP4) or multi-specific organic anion transporter B (MOAT-B), is a protein that in humans is encoded by the ABCC4 gene.

<span class="mw-page-title-main">ABCC1</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 1 (MRP1) is a protein that in humans is encoded by the ABCC1 gene.

In enzymology, a xenobiotic-transporting ATPase (EC 3.6.3.44) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">ABCC3</span> Protein-coding gene in the species Homo sapiens

Canalicular multispecific organic anion transporter 2 is a protein that in humans is encoded by the ABCC3 gene.

<span class="mw-page-title-main">ABCC5</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 5 is a protein that in humans is encoded by the ABCC5 gene.

<span class="mw-page-title-main">Equilibrative nucleoside transporter 2</span> Protein-coding gene in the species Homo sapiens

Equilibrative nucleoside transporter 2 (ENT2) is a protein that in humans is encoded by the SLC29A2 gene.

<span class="mw-page-title-main">SLC22A11</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 11 is a protein that in humans is encoded by the SLC22A11 gene.

<span class="mw-page-title-main">SLC22A8</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 8, or organic anion transporter 3 (OAT3), is a protein that in humans is encoded by the SLC22A8 gene.

<span class="mw-page-title-main">Solute carrier organic anion transporter family member 1A2</span>

Solute carrier organic anion transporter family member 1A2 is a protein that in humans is encoded by the SLCO1A2 gene.

<span class="mw-page-title-main">Multidrug and toxin extrusion protein 1</span> Protein-coding gene in the species Homo sapiens

Multidrug and toxin extrusion protein 1 (MATE1), also known as solute carrier family 47 member 1, is a protein that in humans is encoded by the SLC47A1 gene. SLC47A1 belongs to the MATE family of transporters that are found in bacteria, archaea and eukaryotes.

<span class="mw-page-title-main">ABCC10</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 7 is a protein that in humans is encoded by the ABCC10 gene.

<span class="mw-page-title-main">SLC22A7</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 7 is a protein that in humans is encoded by the gene SLC22A7.

<span class="mw-page-title-main">SLC22A9</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 9 is a protein that in humans is encoded by the SLC22A9 gene.

<span class="mw-page-title-main">Organic anion transporter 1</span> Protein-coding gene in the species Homo sapiens

The organic anion transporter 1 (OAT1) also known as solute carrier family 22 member 6 (SLC22A6) is a protein that in humans is encoded by the SLC22A6 gene. It is a member of the organic anion transporter (OAT) family of proteins. OAT1 is a transmembrane protein that is expressed in the brain, the placenta, the eyes, smooth muscles, and the basolateral membrane of proximal tubular cells of the kidneys. It plays a central role in renal organic anion transport. Along with OAT3, OAT1 mediates the uptake of a wide range of relatively small and hydrophilic organic anions from plasma into the cytoplasm of the proximal tubular cells of the kidneys. From there, these substrates are transported into the lumen of the nephrons of the kidneys for excretion. OAT1 homologs have been identified in rats, mice, rabbits, pigs, flounders, and nematodes.

<span class="mw-page-title-main">Eluxadoline</span> Chemical compound

Eluxadoline, sold under the brand names Viberzi and Truberzi, is a medication taken by mouth for the treatment of diarrhea and abdominal pain in individuals with diarrhea-predominant irritable bowel syndrome (IBS-D). It was approved for use in the United States in 2015. The drug originated from Janssen Pharmaceutica and was developed by Actavis.

<span class="mw-page-title-main">Bilirubin glucuronide</span> Chemical compound

Bilirubin glucuronide is a water-soluble reaction intermediate over the process of conjugation of indirect bilirubin. Bilirubin glucuronide itself belongs to the category of conjugated bilirubin along with bilirubin di-glucuronide. However, only the latter one is primarily excreted into the bile in the normal setting.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000023839 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025194 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M, Kagotani K, Okumura K, Akiyama S, Kuwano M (Oct 1996). "A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation". Cancer Res. 56 (18): 4124–9. PMID   8797578.
  6. van Kuijck MA, Kool M, Merkx GF, Geurts van Kessel A, Bindels RJ, Deen PM, van Os CH (Sep 1997). "Assignment of the canalicular multispecific organic anion transporter gene (CMOAT) to human chromosome 10q24 and mouse chromosome 19D2 by fluorescent in situ hybridization". Cytogenet Cell Genet. 77 (3–4): 285–7. doi:10.1159/000134599. PMID   9284939. S2CID   46739365.
  7. 1 2 "Entrez Gene: ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), member 2".
  8. Sekine T, Miyazaki H, Endou H (February 2006). "Molecular physiology of renal organic anion transporters". Am. J. Physiol. Renal Physiol. 290 (2): F251–61. doi:10.1152/ajprenal.00439.2004. PMID   16403838.
  9. 1 2 Bakos E, Evers R, Sinkó E, Váradi A, Borst P, Sarkadi B (April 2000). "Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions". Mol. Pharmacol. 57 (4): 760–8. doi:10.1124/mol.57.4.760. PMID   10727523.
  10. Peyrière H, Reynes J, Rouanet I, et al. (March 2004). "Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases". J. Acquir. Immune Defic. Syndr. 35 (3): 269–73. doi: 10.1097/00126334-200403010-00007 . PMID   15076241.
  11. 1 2 Gimenez F, Fernandez C, Mabondzo A (June 2004). "Transport of HIV protease inhibitors through the blood–brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins". J. Acquir. Immune Defic. Syndr. 36 (2): 649–58. doi: 10.1097/00126334-200406010-00001 . PMID   15167283. S2CID   6030800.
  12. 1 2 3 4 5 6 7 Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE (March 2007). "Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors". Drug Metab. Dispos. 35 (3): 340–4. doi:10.1124/dmd.106.012765. PMID   17172311. S2CID   46141353.
  13. Miller DS (November 2001). "Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule". J. Pharmacol. Exp. Ther. 299 (2): 567–74. PMID   11602668.
  14. Morii K, Yamamoto T (2016-07-06). "Dubin–Johnson Syndrome". New England Journal of Medicine. 375 (1): e1. doi:10.1056/nejmicm1509529. PMID   27406372.
  15. Marcellin P, Chang TT, Lim SG, et al. (February 2003). "Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B". N. Engl. J. Med. 348 (9): 808–16. doi: 10.1056/NEJMoa020681 . PMID   12606735.
  16. Atta MG, Fine DM (March 2009). "Editorial comment: tenofovir nephrotoxicity--the disconnect between clinical trials and real-world practice". AIDS Read. 19 (3): 118–9. PMID   19334329.
  17. Vittecoq D, Dumitrescu L, Beaufils H, Deray G (August 1997). "Fanconi syndrome associated with cidofovir therapy". Antimicrob. Agents Chemother. 41 (8): 1846. doi:10.1128/AAC.41.8.1846. PMC   164022 . PMID   9257778.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.