Actuator

Last updated

An actuator is a component of a machine that produces force, torque, or displacement, usually in a controlled way, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). [1] An actuator converts such an input signal into the required form of mechanical energy. It is a type of transducer. [2] In simple terms, it is a "mover".

Contents

An actuator requires a control device (controlled by control signal) and a source of energy. The control signal is relatively low energy and may be electric voltage or current, pneumatic, or hydraulic fluid pressure, or even human power. [3] In the electric, hydraulic, and pneumatic sense, it is a form of automation or automatic control.

The displacement achieved is commonly linear or rotational, as exemplified by linear motors and rotary motors, respectively. Rotary motion is more natural for small machines making large displacements. By means of a leadscrew, rotary motion can be adapted to function as a linear actuator (a linear motion, but not a linear motor).

Another broad classification of actuators separates them into two types: incremental-drive actuators and continuous-drive actuators. Stepper motors are one type of incremental-drive actuators. Examples of continuous-drive actuators include DC torque motors, induction motors, hydraulic and pneumatic motors, and piston-cylinder drives (rams). [4]

Types of actuators

Soft actuator

A soft actuator is one that changes its shape in response to stimuli including mechanical, thermal, magnetic, and electrical. Soft actuators mainly deal with the robotics of humans rather than industry which is what most of the actuators are used for. For most actuators they are mechanically durable yet do not have an ability to adapt compared to soft actuators. The soft actuators apply to mainly safety and healthcare for humans which is why they are able to adapt to environments by disassembling their parts. [5] This is why the driven energy behind soft actuators deal with flexible materials like certain polymers and liquids that are harmless to humans.

Hydraulic

The hydraulic actuator consists of cylinder or fluid motor that uses hydraulic power to facilitate mechanical operation. The mechanical motion gives an output in terms of linear, rotatory or oscillatory motion. As liquids are nearly impossible to compress, a hydraulic actuator can exert a large force. The drawback of this approach is its limited acceleration.

The hydraulic cylinder consists of a hollow cylindrical tube along which a piston can slide. The term single acting is used when the fluid pressure is applied to just one side of the piston. The piston can move in only one direction, a spring being frequently used to give the piston a return stroke. The term double acting is used when pressure is applied on each side of the piston; any difference in force between the two sides of the piston moves the piston to one side or the other. [6]

Pneumatic rack and pinion actuators for valve controls of water pipes Pneumatic Rack and Pinion Actuators.JPG
Pneumatic rack and pinion actuators for valve controls of water pipes

Pneumatic

Pneumatic actuators enable considerable forces to be produced from relatively small pressure changes. Pneumatic energy is desirable for main engine controls because it can quickly respond in starting and stopping as the power source does not need to be stored in reserve for operation. Moreover, pneumatic actuators are cheaper, and often more powerful than other actuators. These forces are often used with valves to move diaphragms to affect the flow of air through the valve. [7] [8]

The advantage of pneumatic actuators consists exactly in the high level of force available in a relatively small volume. While the main drawback of the technology consists in the need for a compressed air network composed of several components such as compressors, reservoirs, filters, dryers, air treatment subsystems, valves, tubes, etc. which makes the technology energy inefficient with energy losses that can sum up to 95%

Electric valve actuator controlling a  1/2 needle valve. Compact and electric valve actuator.jpg
Electric valve actuator controlling a ½ needle valve.

Electric

Since 1960, several actuator technologies have been developed. Electric actuators can be classified in the following groups:

Electromechanical actuator (EMA)

It converts the rotational force of an electric rotary motor into a linear movement to generate the requested linear movement through a mechanism; either a belt (Belt Drive axis with stepper or servo), or a screw (either a ball or a lead screw or planetary roller screw).

The main advantages of electromechanical actuators are their relatively good level of accuracy with respect to pneumatics, their possible long lifecycle and the little maintenance effort required (might require grease). It is possible to reach relatively high force, on the order of 100 kN.

The main limitation of these actuators are the reachable speed, the important dimensions and weight they require. The main application of such actuators is mainly seen in health care devices and factory automation.

Electrohydraulic actuator

Another approach is an electrohydraulic actuator, where the electric motor remains the prime mover but provides torque to operate a hydraulic accumulator that is then used to transmit actuation force in much the same way that diesel engine/hydraulics are typically used in heavy equipment.

Electrical energy is used to actuate equipment such as multi-turn valves, or electric-powered construction and excavation equipment.

When used to control the flow of fluid through a valve, a brake is typically installed above the motor to prevent the fluid pressure from forcing open the valve. If no brake is installed, the actuator gets activated to reclose the valve, which is slowly forced open again. This sets up an oscillation (open, close, open ...) and the motor and actuator will eventually become damaged. [9]

Linear motor

Linear motors are different from electromechanical actuators, they work with the same principle as electric rotary motors, in effect it can be thought as a rotary motor which has been cut and unrolled. Thus, instead of producing a rotational movement, they produce a linear force along their length. Because linear motors cause lower friction losses than other devices, some linear motor products can last over a hundred million cycles.

Linear motors are divided in 3 basic categories: flat linear motor (classic), U-Channel linear motors and Tubular linear motors.

Linear motor technology is the best solution in the context of a low load (up to 30Kgs) because it provides the highest level of speed, control and accuracy.

In fact, it represents the most desired and versatile technology. Due to the limitations of pneumatics, the current electric actuator technology is a viable solution for specific industry applications and it has been successfully introduced in market segments such as the watchmaking, semiconductor and pharmaceutical industries (as high as 60% of the applications. The growing interest for this technology, can be explained by the following characteristics:

  • High precision (equal or less than 0,1 mm);
  • High cycling rate (greater than 100 cycles/min);
  • Possible usage in clean and highly-regulated environments (no leakages of air, humidity or lubricants allowed);
  •  Need for programmable motion in the situation of complex operations

The main disadvantages of linear motors are:

  • They are expensive respect to pneumatics and other electric technologies.
  • They are not easy to integrate in standard machineries due to their important size and high weight.
  • They have a low force density respect to pneumatic and electromechanical actuators.

Rotary motor

Rotary motors are actuators that use a piece of energy to form an oscillatory motion at a certain angle of movement. [10] Rotary actuators can have up to a rotation of 360 degrees. This allows it to differ from a linear motor as the linear is bound to a set distance compared to the rotary motor. Rotary motors have the ability to be set at any given degree in a field making the device easier to set up still with durability and a set torque.

Rotary motors can be powered by 3 different techniques such as Electric, Fluid, or Manual. [11] However, Fluid powered rotary actuators have 5 sub-sections of actuators such as Scotch Yoke, Vane, Rack-and-Pinion, Helical, and Electrohydraulic. All forms have their own specific design and use allowing the ability to choose multiple angles of degree.

Applications for the rotary actuators are just about endless but, will more than likely be found dealing with mostly hydraulic pressured devices and industries. Rotary actuators are even used in the robotics field when seeing robotic arms in industry lines. Anything you see that deals with motion control systems to perform a task in technology is a good chance to be a rotary actuator. [11]

Thermal or magnetic

Actuators which can be actuated by applying thermal or magnetic energy to a solid-state material have been used in commercial applications. Thermal actuators can be triggered by temperature or heating through the Joule effect and tend to be compact, lightweight, economical and with high power density. These actuators use shape memory materials such as shape-memory alloys (SMAs) or magnetic shape-memory alloys (MSMAs). [12]

Mechanical

A mechanical actuator functions to execute movement by converting one kind of motion, such as rotary motion, into another kind, such as linear motion. An example is a rack and pinion. The operation of mechanical actuators is based on combinations of structural components, such as gears and rails, or pulleys and chains.

3D printed soft actuators

The majority of the existing soft actuators are fabricated using multistep low yield processes such as micro-moulding, [13] solid freeform fabrication, [14] and mask lithography. [15] However, these methods require manual fabrication of devices, post processing/assembly, and lengthy iterations until maturity in the fabrication is achieved. To avoid the tedious and time-consuming aspects of the current fabrication processes, researchers are exploring an appropriate manufacturing approach for effective fabrication of soft actuators. Therefore, special soft systems that can be fabricated in a single step by rapid prototyping methods, such as 3D printing, are utilized to narrow the gap between the design and implementation of soft actuators, making the process faster, less expensive, and simpler. They also enable incorporation of all actuator components into a single structure eliminating the need to use external joints, adhesives, and fasteners.

Shape memory polymer (SMP) actuators are the most similar to our muscles, providing a response to a range of stimuli such as light, electrical, magnetic, heat, pH, and moisture changes. They have some deficiencies including fatigue and high response time that have been improved through the introduction of smart materials and combination of different materials by means of advanced fabrication technology. The advent of 3D printers has made a new pathway for fabricating low-cost and fast response SMP actuators. The process of receiving external stimuli like heat, moisture, electrical input, light or magnetic field by SMP is referred to as shape memory effect (SME). SMP exhibits some rewarding features such a low density, high strain recovery, biocompatibility, and biodegradability.

Photopolymers or light activated polymers (LAP) are another type of SMP that are activated by light stimuli. The LAP actuators can be controlled remotely with instant response and, without any physical contact, only with the variation of light frequency or intensity.

A need for soft, lightweight and biocompatible soft actuators in soft robotics has influenced researchers for devising pneumatic soft actuators because of their intrinsic compliance nature and ability to produce muscle tension.

Polymers such as dielectric elastomers (DE), ionic polymer–metal composites (IPMC), ionic electroactive polymers, polyelectrolyte gels, and gel-metal composites are common materials to form 3D layered structures that can be tailored to work as soft actuators. EAP actuators are categorized as 3D printed soft actuators that respond to electrical excitation as deformation in their shape.

Examples and applications

In engineering, actuators are frequently used as mechanisms to introduce motion, or to clamp an object so as to prevent motion. [16] In electronic engineering, actuators are a subdivision of transducers. They are devices which transform an input signal (mainly an electrical signal) into some form of motion.

Examples of actuators

Circular to linear conversion

Motors are mostly used when circular motions are needed, but can also be used for linear applications by transforming circular to linear motion with a lead screw or similar mechanism. On the other hand, some actuators are intrinsically linear, such as piezoelectric actuators. Conversion between circular and linear motion is commonly made via a few simple types of mechanism including:

Virtual instrumentation

In virtual instrumentation, actuators and sensors are the hardware complements of virtual instruments.

Performance metrics

Performance metrics for actuators include speed, acceleration, and force (alternatively, angular speed, angular acceleration, and torque), as well as energy efficiency and considerations such as mass, volume, operating conditions, and durability, among others.

Force

When considering force in actuators for applications, two main metrics should be considered. These two are static and dynamic loads. Static load is the force capability of the actuator while not in motion. Conversely, the dynamic load of the actuator is the force capability while in motion.

Speed

Speed should be considered primarily at a no-load pace, since the speed will invariably decrease as the load amount increases. The rate the speed will decrease will directly correlate with the amount of force and the initial speed.

Operating conditions

Actuators are commonly rated using the standard IP Code rating system. Those that are rated for dangerous environments will have a higher IP rating than those for personal or common industrial use.

Durability

This will be determined by each individual manufacturer, depending on usage and quality.

See also

Related Research Articles

<span class="mw-page-title-main">Engine</span> Machine that converts one or more forms of energy into mechanical energy (of motion)

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

<span class="mw-page-title-main">Machine</span> Powered mechanical device

A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Rack and pinion</span> Type of linear actuator

A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert between rotational motion and linear motion. Rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate. A rack-and-pinion drive can use both straight and helical gears. Though some suggest helical gears are quieter in operation, no hard evidence supports this theory. Helical racks, while being more affordable, have proven to increase side torque on the datums, increasing operating temperature leading to premature wear. Straight racks require a lower driving force and offer increased torque and speed per fraction of gear ratio which allows lower operating temperature and lessens viscal friction and energy use. The maximum force that can be transmitted in a rack-and-pinion mechanism is determined by the torque on the pinion and its size, or, conversely, by the force on the rack and the size of the pinion.

<span class="mw-page-title-main">Fluid power</span> Use of fluids under pressure to generate, control, and transmit power

Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.

<span class="mw-page-title-main">Brushless DC electric motor</span> Synchronous electric motor powered by an inverter

A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.

<span class="mw-page-title-main">Hydraulic machinery</span> Type of machine that uses liquid fluid power to perform work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.

<span class="mw-page-title-main">Pneumatic motor</span> Compressed air engine

A pneumatic motor, or compressed air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed air energy to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor, piston air motor, air turbine or gear type motor.

A dashpot, also known as a damper, is a mechanical device that resists motion via viscous friction. The resulting force is proportional to the velocity, but acts in the opposite direction, slowing the motion and absorbing energy. It is commonly used in conjunction with a spring. The process and instrumentation diagram (P&ID) symbol for a dashpot is .

<span class="mw-page-title-main">Motion control</span> Field of automation which studies how to precisely move parts of machines

Motion control is a sub-field of automation, encompassing the systems or sub-systems involved in moving parts of machines in a controlled manner. Motion control systems are extensively used in a variety of fields for automation purposes, including precision engineering, micromanufacturing, biotechnology, and nanotechnology. The main components involved typically include a motion controller, an energy amplifier, and one or more prime movers or actuators. Motion control may be open loop or closed loop. In open loop systems, the controller sends a command through the amplifier to the prime mover or actuator, and does not know if the desired motion was actually achieved. Typical systems include stepper motor or fan control. For tighter control with more precision, a measuring device may be added to the system. When the measurement is converted to a signal that is sent back to the controller, and the controller compensates for any error, it becomes a Closed loop System.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

Pneumatic artificial muscles (PAMs) are contractile or extensional devices operated by pressurized air filling a pneumatic bladder. In an approximation of human muscles, PAMs are usually grouped in pairs: one agonist and one antagonist.

A pneumatic control valve actuator converts energy into mechanical motion. The motion can be rotary or linear, depending on the type of actuator.

<span class="mw-page-title-main">Hydraulic motor</span> Machine converting flow into rotation

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. This enables the direct control of flow rate and the consequential control of process quantities such as pressure, temperature, and liquid level.

<span class="mw-page-title-main">Valve actuator</span> Mechanism for opening and closing a valve

A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process. Actuators may be only to open and close the valve, or may allow intermediate positioning; some valve actuators include switches or other ways to remotely indicate the position of the valve.

<span class="mw-page-title-main">Hydraulic pump</span> Mechanical power source

A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

<span class="mw-page-title-main">Yaw system</span>

The yaw system of wind turbines is the component responsible for the orientation of the wind turbine rotor towards the wind.

<span class="mw-page-title-main">Rotary actuator</span> AE motor

A rotary actuator is an actuator that produces a rotary motion or torque.

In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field from electric current, and uses the magnetic field to create linear motion. In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls the plunger into the coil. Electromagnets with fixed cores are not considered solenoids. In simple terms, a solenoid converts electrical energy into mechanical work. Typically, it has a multiturn coil of magnet wire surrounded by a frame, which is also a magnetic flux carrier to enhance its efficiency. In engineering, the term may also refer to a variety of transducer devices that convert energy into linear motion, more sophisticated than simple two–position actuators. The term "solenoid" also often refers to a solenoid valve, an integrated device containing an electromechanical solenoid which actuates either a pneumatic or hydraulic valve, or a solenoid switch, which is a specific type of relay that internally uses an electromechanical solenoid to operate an electrical switch; for example, an automobile starter solenoid or linear solenoid. Solenoid bolts, a type of electromechanical locking mechanism, also exist.

References

  1. Escudier, Marcel; Atkins, Tony (2019). "A Dictionary of Mechanical Engineering". doi:10.1093/acref/9780198832102.001.0001. ISBN   978-0-19-883210-2.{{cite journal}}: Cite journal requires |journal= (help)
  2. Butterfield, Andrew J.; Szymanski, John, eds. (2018). "A Dictionary of Electronics and Electrical Engineering". Oxford Reference. doi:10.1093/acref/9780198725725.001.0001. ISBN   978-0-19-872572-5.
  3. Nesbitt, B. (2011). Handbook of Valves and Actuators: Valves Manual International. Elsevier Science. p. 2. ISBN   978-0-08-054928-6 . Retrieved 2021-11-11.
  4. Clarence W. de Silva. Mechatronics: An Integrated Approach (2005). CRC Press. p. 761.
  5. El-Atab, Nazek; Mishra, Rishabh B.; Al-Modaf, Fhad; Joharji, Lana; Alsharif, Aljohara A.; Alamoudi, Haneen; Diaz, Marlon; Qaiser, Nadeem; Hussain, Muhammad Mustafa (October 2020). "Soft Actuators for Soft Robotic Applications: A Review". Advanced Intelligent Systems. 2 (10): 2000128. doi: 10.1002/aisy.202000128 . hdl: 10754/664810 . ISSN   2640-4567. S2CID   224805628.
  6. "What's the Difference Between Pneumatic, Hydraulic, and Electrical Actuators?". machinedesign.com. Archived from the original on 2016-04-23. Retrieved 2016-04-26.
  7. "What is a Pneumatic Actuator?". www.tech-faq.com. Archived from the original on 2018-02-21. Retrieved 2018-02-20.
  8. "Pneumatic Valve Actuators Information - IHS Engineering360". www.globalspec.com. Archived from the original on 2016-06-24. Retrieved 2016-04-26.
  9. Tisserand, Olivier. "How does an electric actuator work?". Archived from the original on 2018-02-21. Retrieved 2018-02-20.
  10. "What Are the Differences Between Linear and Rotary Actuators?". RoboticsTomorrow. Retrieved 2022-07-13.
  11. 1 2 "Rotary Actuator - an overview". ScienceDirect Topics. Retrieved 2022-07-13.
  12. "Ultra-compact: Valves with shape memory actuators". 24 March 2021.
  13. Feng, Guo-Hua; Yen, Shih-Chieh (2015). "Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms". 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). pp. 1877–80. doi:10.1109/TRANSDUCERS.2015.7181316. ISBN   978-1-4799-8955-3. S2CID   7243537.
  14. Malone, Evan; Lipson, Hod (2006). "Freeform fabrication of ionomeric polymer-metal composite actuators". Rapid Prototyping Journal. 12 (5): 244–53. doi:10.1108/13552540610707004. S2CID   1172362.
  15. Kerdlapee, Pongsak; Wisitsoraat, Anurat; Phokaratkul, Ditsayuth; Leksakul, Komgrit; Phatthanakun, Rungreung; Tuantranont, Adisorn (2013). "Fabrication of electrostatic MEMS microactuator based on X-ray lithography with Pb-based X-ray mask and dry-film-transfer-to-PCB process". Microsystem Technologies. 20: 127–35. doi:10.1007/s00542-013-1816-x. S2CID   110234049.
  16. Shabestari, N. P. (2019). "Fabrication of a simple and easy-to-make piezoelectric actuator and its use as phase shifter in digital speckle pattern interferometry". Journal of Optics. 48 (2): 272–282. doi:10.1007/s12596-019-00522-4. S2CID   155531221.
  17. Sclater, N. (2007). Mechanisms and Mechanical Devices Sourcebook (4th ed.). McGraw-Hill.