Aggregate (composite)

Last updated
Grinding concrete exposes aggregate stones. Concrete aggregate grinding.JPG
Grinding concrete exposes aggregate stones.

Aggregate is the component of a composite material that resists compressive stress and provides bulk to the composite material. For efficient filling, aggregate should be much smaller than the finished item, but have a wide variety of sizes. Aggregates are generally added to increase the strength of composite materials. For example, the particles of stone used to make concrete typically include both sand and gravel. Many construction cement add in aggregates to increase its mechanical strength. [1] Aggregates make up 60-80% of the volume of concrete and 70-85% of the mass of concrete.

Contents

Comparison to fiber composites

Aggregate composites tend to be much easier to fabricate, and much more predictable in their finished properties, than fiber composites . Fiber orientation and continuity can have an overwhelming effect, but can be difficult to control and assess. Fabrication aside, aggregate materials themselves also tend to be less expensive; the most common aggregates mentioned above are found in nature and can often be used with only minimal processing.

Not all composite materials include aggregate. Aggregate particles tend to have about the same dimensions in every direction (that is, an aspect ratio of about one), so that aggregate composites do not display the level of synergy that fiber composites often do. A strong aggregate held together by a weak matrix will be weak in tension, whereas fibers can be less sensitive to matrix properties, especially if they are properly oriented and run the entire length of the part (i.e., a continuous filament).

Most composites are filled with particles whose aspect ratio lies somewhere between oriented filaments and spherical aggregates. A good compromise is chopped fiber, where the performance of filament or cloth is traded off in favor of more aggregate-like processing techniques. Ellipsoid and plate-shaped aggregates are also used.

Aggregate properties

In most cases, the ideal finished piece would be 100% aggregate. A given application's most desirable quality (be it high strength, low cost, high dielectric constant, or low density) is usually most prominent in the aggregate itself; all the aggregate lacks is the ability to flow on a small scale, and form attachments between particles. The matrix is specifically chosen to serve this role, but its abilities should not be abused.

Aggregate size

Experiments and mathematical models show that more of a given volume can be filled with hard spheres if it is first filled with large spheres, then the spaces between (interstices) are filled with smaller spheres, and the new interstices filled with still smaller spheres as many times as possible. For this reason, control of particle size distribution can be quite important in the choice of aggregate; appropriate simulations or experiments are necessary to determine the optimal proportions of different-sized particles.

The upper limit to particle size depends on the amount of flow required before the composite sets (the gravel in paving concrete can be fairly coarse, but fine sand must be used for tile mortar), whereas the lower limit is due to the thickness of matrix material at which its properties change (clay is not included in concrete because it would "absorb" the matrix, preventing a strong bond to other aggregate particles). Particle size distribution is also the subject of much study in the fields of ceramics and powder metallurgy.

Some exceptions to this rule include:

Toughened composites

Toughness is a compromise between the (often contradictory) requirements of strength and plasticity. In many cases, the aggregate will have one of these properties, and will benefit if the matrix can add what it lacks. Perhaps the most accessible examples of this are composites with an organic matrix and ceramic aggregate, such as asphalt concrete ("tarmac") and filled plastic (i.e., Nylon mixed with powdered glass), although most metal matrix composites also benefit from this effect. In this case, the correct balance of hard and soft components is necessary or the material will become either too weak or too brittle.

Nanocomposites

Many materials properties change radically at small length scales (see nanotechnology). In the case where this change is desirable, a certain range of aggregate size is necessary to ensure good performance. This naturally sets a lower limit to the amount of matrix material used.

Unless some practical method is implemented to orient the particles in micro- or nano-composites, their small size and (usually) high strength relative to the particle-matrix bond allows any macroscopic object made from them to be treated as an aggregate composite in many respects.

While bulk synthesis of such nanoparticles as carbon nanotubes is currently too expensive for widespread use, some less extreme nanostructured materials can be synthesized by traditional methods, including electrospinning and spray pyrolysis. One important aggregate made by spray pyrolysis is glass microspheres. Often called microballoons, they consist of a hollow shell several tens of nanometers thick and approximately one micrometer in diameter. Casting them in a polymer matrix yields syntactic foam, with extremely high compressive strength for its low density.

Many traditional nanocomposites escape the problem of aggregate synthesis in one of two ways:

Natural aggregates: By far the most widely used aggregates for nano-composites are naturally occurring. Usually these are ceramic materials whose crystalline structure is extremely directional, allowing it to be easily separated into flakes or fibers. The nanotechnology touted by General Motors for automotive use is in the former category: a fine-grained clay with a laminar structure suspended in a thermoplastic olefin (a class which includes many common plastics like polyethylene and polypropylene). The latter category includes fibrous asbestos composites (popular in the mid-20th century), often with matrix materials such as linoleum and Portland cement.

In-situ aggregate formation: Many micro-composites form their aggregate particles by a process of self-assembly. For example, in high impact polystyrene, two immiscible phases of polymer (including brittle polystyrene and rubbery polybutadiene) are mixed together. Special molecules (graft copolymers) include separate portions which are soluble in each phase, and so are only stable at the interface between them, in the manner of a detergent. Since the number of this type of molecule determines the interfacial area, and since spheres naturally form to minimize surface tension, synthetic chemists can control the size of polybutadiene droplets in the molten mix, which harden to form rubbery aggregates in a hard matrix. Dispersion strengthening is a similar example from the field of metallurgy. In glass-ceramics, the aggregate is often chosen to have a negative coefficient of thermal expansion, and the proportion of aggregate to matrix adjusted so that the overall expansion is very near zero. Aggregate size can be reduced so that the material is transparent to infrared light.

See also

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

<span class="mw-page-title-main">Carbon fibers</span> Material fibers about 5–10 μm in diameter composed of carbon

Carbon fibers or carbon fibres are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports. However, they are relatively expensive compared to similar fibers, such as glass fiber, basalt fibers, or plastic fibers.

<span class="mw-page-title-main">Building material</span> Material which is used for construction purposes

Building material is material used for construction. Many naturally occurring substances, such as clay, rocks, sand, wood, and even twigs and leaves, have been used to construct buildings and other structures, like bridges. Apart from naturally occurring materials, many man-made products are in use, some more and some less synthetic. The manufacturing of building materials is an established industry in many countries and the use of these materials is typically segmented into specific specialty trades, such as carpentry, insulation, plumbing, and roofing work. They provide the make-up of habitats and structures including homes.

<span class="mw-page-title-main">Reinforced carbon–carbon</span> Graphite-based composite material

Carbon fibre reinforced carbon (CFRC), carbon–carbon (C/C), or reinforced carbon–carbon (RCC) is a composite material consisting of carbon fiber reinforcement in a matrix of graphite. It was developed for the reentry vehicles of intercontinental ballistic missiles, and is most widely known as the material for the nose cone and wing leading edges of the Space Shuttle orbiter. Carbon-carbon brake discs and brake pads have been the standard component of the brake systems of Formula One racing cars since the late 1970s; the first year carbon brakes were seen on a Formula One car was 1976.

<span class="mw-page-title-main">Syntactic foam</span> Composite material filled with low-density spheres

Syntactic foams are composite materials synthesized by filling a metal, polymer, cementitious or ceramic matrix with hollow spheres called microballoons or cenospheres or non-hollow spheres as aggregates. In this context, "syntactic" means "put together." The presence of hollow particles results in lower density, higher specific strength, lower coefficient of thermal expansion, and, in some cases, radar or sonar transparency.

<span class="mw-page-title-main">Glass microsphere</span>

Glass microspheres are microscopic spheres of glass manufactured for a wide variety of uses in research, medicine, consumer goods and various industries. Glass microspheres are usually between 1 and 1000 micrometers in diameter, although the sizes can range from 100 nanometers to 5 millimeters in diameter. Hollow glass microspheres, sometimes termed microballoons or glass bubbles, have diameters ranging from 10 to 300 micrometers.

A binder or binding agent is any material or substance that holds or draws other materials together to form a cohesive whole mechanically, chemically, by adhesion or cohesion.

Engineered Cementitious Composite (ECC), also called Strain Hardening Cement-based Composites (SHCC) or more popularly as bendable concrete, is an easily molded mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers. Unlike regular concrete, ECC has a tensile strain capacity in the range of 3–7%, compared to 0.01% for ordinary portland cement (OPC) paste, mortar or concrete. ECC therefore acts more like a ductile metal material rather than a brittle glass material, leading to a wide variety of applications.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

<span class="mw-page-title-main">Construction aggregate</span> Coarse to fine grain rock materials used in concrete

Construction aggregate, or simply aggregate, is a broad category of coarse- to medium-grained particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates. Aggregates are the most mined materials in the world. Aggregates are a component of composite materials such as concrete and asphalt; the aggregate serves as reinforcement to add strength to the overall composite material. Due to the relatively high hydraulic conductivity value as compared to most soils, aggregates are widely used in drainage applications such as foundation and French drains, septic drain fields, retaining wall drains, and roadside edge drains. Aggregates are also used as base material under foundations, roads, and railroads. In other words, aggregates are used as a stable foundation or road/rail base with predictable, uniform properties, or as a low-cost extender that binds with more expensive cement or asphalt to form concrete. Although most kinds of aggregate require a form of binding agent, there are types of self-binding aggregate which require no form of binding agent.

Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.

<span class="mw-page-title-main">Filler (materials)</span> Particles added to improve its properties

Filler materials are particles added to resin or binders that can improve specific properties, make the product cheaper, or a mixture of both. The two largest segments for filler material use is elastomers and plastics. Worldwide, more than 53 million tons of fillers are used every year in application areas such as paper, plastics, rubber, paints, coatings, adhesives, and sealants. As such, fillers, produced by more than 700 companies, rank among the world's major raw materials and are contained in a variety of goods for daily consumer needs. The top filler materials used are ground calcium carbonate (GCC), precipitated calcium carbonate (PCC), kaolin, talc, and carbon black. Filler materials can affect the tensile strength, toughness, heat resistance, color, clarity, etc. A good example of this is the addition of talc to polypropylene. Most of the filler materials used in plastics are mineral or glass based filler materials. Particulates and fibers are the main subgroups of filler materials. Particulates are small particles of filler that are mixed in the matrix where size and aspect ratio are important. Fibers are small circular strands that can be very long and have very high aspect ratios.

Rubber toughening is a process in which rubber nanoparticles are interspersed within a polymer matrix to increase the mechanical robustness, or toughness, of the material. By "toughening" a polymer it is meant that the ability of the polymeric substance to absorb energy and plastically deform without fracture is increased. Considering the significant advantages in mechanical properties that rubber toughening offers, most major thermoplastics are available in rubber-toughened versions; for many engineering applications, material toughness is a deciding factor in final material selection.

Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

<span class="mw-page-title-main">Types of concrete</span> Building material consisting of aggregates cemented by a binder

Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.

Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand, ballast, cement and water.

SiC–SiC matrix composite is a particular type of ceramic matrix composite (CMC) which have been accumulating interest mainly as high temperature materials for use in applications such as gas turbines, as an alternative to metallic alloys. CMCs are generally a system of materials that are made up of ceramic fibers or particles that lie in a ceramic matrix phase. In this case, a SiC/SiC composite is made by having a SiC matrix phase and a fiber phase incorporated together by different processing methods. Outstanding properties of SiC/SiC composites include high thermal, mechanical, and chemical stability while also providing high strength to weight ratio.

<span class="mw-page-title-main">Self-healing concrete</span> Materials science concept

Self-healing concrete is characterized as the capability of concrete to fix its cracks on its own autogenously or autonomously. It not only seals the cracks but also partially or entirely recovers the mechanical properties of the structural elements. This kind of concrete is also known as self-repairing concrete. Because concrete has a poor tensile strength compared to other building materials, it often develops cracks in the surface. These cracks reduce the durability of the concrete because they facilitate the flow of liquids and gases that may contain harmful compounds. If microcracks expand and reach the reinforcement, not only will the concrete itself be susceptible to attack, but so will the reinforcement steel bars. Therefore, it is essential to limit the crack's width and repair it as quickly as feasible. Self-healing concrete would not only make the material more sustainable, but it would also contribute to an increase in the service life of concrete structures and make the material more durable and environmentally friendly.

References

  1. Struble, Leslie; Skalny, Jan; Mindess, Sidney (1980-03-01). "A review of the cement-aggregate bond". Cement and Concrete Research. 10 (2): 277–286. doi:10.1016/0008-8846(80)90084-8. ISSN   0008-8846.