Alternating hemiplegia

Last updated
Alternating hemiplegia
Specialty Neurology

Alternating hemiplegia (also known as crossed hemiplegia) is a form of hemiplegia that has an ipsilateral cranial nerve palsies and contralateral hemiplegia or hemiparesis of extremities of the body. The disorder is characterized by recurrent episodes of paralysis on one side of the body. [1] There are multiple forms of alternating hemiplegia, Weber's syndrome, middle alternating hemiplegia, and inferior alternating hemiplegia. This type of syndrome can result from a unilateral lesion in the brainstem affecting both upper motor neurons and lower motor neurons. The muscles that would receive signals from these damaged upper motor neurons result in spastic paralysis. With a lesion in the brainstem, this affects the majority of limb and trunk muscles on the contralateral side due to the upper motor neurons decussation after the brainstem. The cranial nerves and cranial nerve nuclei are also located in the brainstem making them susceptible to damage from a brainstem lesion. Cranial nerves III (Oculomotor), VI (Abducens), and XII (Hypoglossal) are most often associated with this syndrome given their close proximity with the pyramidal tract, the location which upper motor neurons are in on their way to the spinal cord. Damages to these structures produce the ipsilateral presentation of paralysis or palsy due to the lack of cranial nerve decussation (aside from the trochlear nerve) before innervating their target muscles. The paralysis may be brief or it may last for several days, many times the episodes will resolve after sleep. Some common symptoms of alternating hemiplegia are mental impairment, gait and balance difficulties, excessive sweating and changes in body temperature. [1]

Contents

Symptoms and signs

Superior alternating hemiplegia

Superior alternating hemiplegia (also known as Weber syndrome) has a few distinct symptoms: contralateral hemiparesis of limb and facial muscle accompanied by weakness in one or more muscles that control eye movement on the same side. [2] Another symptom that appears is the loss of eye movement due to damage to the oculomotor nerve fibers. The upper and lower extremities have increased weakness. [3]

Middle alternating hemiplegia

Middle alternating hemiplegia (also known as Foville Syndrome) typically constitutes weakness of the extremities accompanied by paralysis of the extraocular muscle, specifically lateral rectus, on the opposite side of the affected extremities, which indicates a lesion in the caudal and medial pons involving the abducens nerve root (controls movement of the eye) and corticospinal fibers (carries motor commands from the brain to the spinal cord). [3]

Inferior alternating hemiplegia

Inferior alternating hemiplegia (also known as medial medullary syndrome) typically involves a "weakness of the extremities accompanied by paralysis of muscles on the ipsilateral side of the tongue (seen as a deviation of the tongue on that side on protrusion). These symptoms indicate a lesion in the medulla involving the corticospinal fibers in the pyramid and the exiting hypoglossal nerve roots. [3]

Causes

Note that this description is focused on alternating hemiplegia of childhood. Similar syndromes may develop following a brainstem infarction. The cause of alternating hemiplegia of childhood is the mutation of ATP1A3 gene. In a study of fifteen female and nine male patients with alternating hemiplegia, a mutation in ATP1A3 gene was present. Three patients showed heterozygous de-novo missense mutation. Six patients were found with de-novo missense mutation and one patient was identified with de-novo splice site mutation. [4] De novo mutation is a mutation that occurs in the germ cell of one parent. Neither parent has the mutation, but it is passed to the child through the sperm or egg. [5]

Diagnosis

There is no diagnostic test for alternating hemiplegia, which makes it very difficult to diagnose. Also, because alternating hemiplegia is extremely rare, it is frequently missed and the patient is often misdiagnosed. Proper diagnosis, however, is critical for early treatment of the disorder. There are many criteria that can help in the proper general diagnosis of alternating hemiplegia.[ citation needed ]

Criteria for diagnosis

First, the symptoms must be observed before the patient is 18 months of age. Second, there must be frequent episodes of hemiplegia, involving either side of the body. Third, other paroxysmal disorders including tonic attacks, dystonia, nystagmus, strabismus, dyspnoea, and other uncontrollable disorders are noticed to occur. Although common, the paroxysmal disorders involving the eye, nystagmus and strabismus, may not be apparent in older children and may not have been remembered in childhood so a lack of these symptoms does not rule out alternating hemiplegia. Fourth, all symptoms clear up directly after falling asleep and usually come back after waking during an attack. This occurrence is very indicative of alternating hemiplegia and as such those who display this are usually diagnosed with probable alternating hemiplegia. Fifth, indications of developmental delays, learning disability, or neurological irregularities are present. These issues may not be obvious in very young patients; however, it appears in almost all older patients. [6] :777 The final criteria before a diagnosis of alternating hemiplegia can be made is that all of these symptoms must not be due to another disorder. If the symptoms can be attributed to another disease or disorder, then a definitive diagnosis is difficult to make. [6] :778

Diagnosis of Weber's syndrome

Weber's syndrome is the only form of alternating hemiplegia that is somewhat easy to diagnose beyond the general criteria. Although Weber's syndrome is rare, a child born with the disorder typically has a port-wine stain on the face around the eye. While the port-wine stain does not necessarily mean the child has Weber's syndrome, if the port-wine stain involves the ophthalmic division of the trigeminal nerve than the likelihood of it being weber's syndrome greatly increases. If a port-wine stain around the eye is found, the patient should be screened for intracranial leptomeningeal angiomatosis. Magnetic resonance imaging (MRI) can be used to determine the presence and severity while computed cranial tomography can be used to determine the effect. MRI is the preferred diagnostic test on children presenting with port-wine stain. Other imaging techniques can be used in addition to further determine the severity of the disorder. The initial diagnosis is made based on the presence of neurologic and ophthalmic disease but the disease progresses differently in each patient so after initial diagnosis the patient should be monitored frequently in order to handle further complications resulting from the syndrome. [7]

Treatment

Medical treatment of hemiplegia can be separate into several different categories: [6] :779


Seizure trigger include exposure to cold, emotional stress, fatigue, bathing, hyperthermia/hypothermia, and upper respiratory infection. A drug called flunarizine, which is a calcium channel blocker can help to reduce the severity and the length of attacks of the paralysis. [1]

Flunarizine

Many children affected by alternating hemiplegia also have epilepsy. Seizures may occur during an attack but more often occur between attacks. Anti-epilepsy drugs are given to prevent or lessen the seizures, but the drugs often don't work and have severe side effects that require the patient to discontinue use. Flunarizine, which blocks calcium channels, is an antiepilepsy drugs used in 50% of patients, and has been shown to shorten the duration of attacks as well as reducing the severity of the attacks. While Flunarizine does not stop the attacks, it is the most common drug prescribed to treat those with alternating hemiplegia. [6] :779

Sleep and diet

Sleep is also used as a management technique. An early indication of an episode is tiredness so medication such as melatonin or Buccal midazolam can be administered to induce sleep and avoid the episode. People with alternating hemiplegia are often underweight and with the help of dietitians, a meal plan should be developed for times of attack when consumption of food may be difficult. [6] :779–780

See also

Related Research Articles

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, Traumatic Brain Injury or stroke.

<span class="mw-page-title-main">Abducens nerve</span> Cranial nerve VI, for eye movements

The abducens nerve or abducent nerve, also known as the sixth cranial nerve, cranial nerve VI, or simply CN VI, is a cranial nerve in humans and various other animals that controls the movement of the lateral rectus muscle, one of the extraocular muscles responsible for outward gaze. It is a somatic efferent nerve.

<span class="mw-page-title-main">Trochlear nerve</span> Cranial nerve IV, for eye movements

The trochlear nerve, also known as the fourth cranial nerve, cranial nerve IV, or CN IV, is a cranial nerve that innervates a single muscle - the superior oblique muscle of the eye. Unlike most other cranial nerves, the trochlear nerve is exclusively a motor nerve.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three', and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Lateral medullary syndrome</span> Medical condition

Lateral medullary syndrome is a neurological disorder causing a range of symptoms due to ischemia in the lateral part of the medulla oblongata in the brainstem. The ischemia is a result of a blockage most commonly in the vertebral artery or the posterior inferior cerebellar artery. Lateral medullary syndrome is also called Wallenberg's syndrome, posterior inferior cerebellar artery (PICA) syndrome and vertebral artery syndrome.

<span class="mw-page-title-main">Medial medullary syndrome</span> Medical condition

Medial medullary syndrome, also known as inferior alternating syndrome, hypoglossal alternating hemiplegia, lower alternating hemiplegia, or Dejerine syndrome, is a type of alternating hemiplegia characterized by a set of clinical features resulting from occlusion of the anterior spinal artery. This results in the infarction of medial part of the medulla oblongata.

<span class="mw-page-title-main">Abducens nucleus</span>

The abducens nucleus is the originating nucleus from which the abducens nerve (VI) emerges—a cranial nerve nucleus. This nucleus is located beneath the fourth ventricle in the caudal portion of the pons near the midline, medial to the sulcus limitans.

<span class="mw-page-title-main">Sixth nerve palsy</span> Medical condition

Sixth nerve palsy, or abducens nerve palsy, is a disorder associated with dysfunction of cranial nerve VI, which is responsible for causing contraction of the lateral rectus muscle to abduct the eye. The inability of an eye to turn outward, results in a convergent strabismus or esotropia of which the primary symptom is diplopia in which the two images appear side-by-side. Thus, the diplopia is horizontal and worse in the distance. Diplopia is also increased on looking to the affected side and is partly caused by overaction of the medial rectus on the unaffected side as it tries to provide the extra innervation to the affected lateral rectus. These two muscles are synergists or "yoke muscles" as both attempt to move the eye over to the left or right. The condition is commonly unilateral but can also occur bilaterally.

<span class="mw-page-title-main">Facial motor nucleus</span>

The facial motor nucleus is a collection of neurons in the brainstem that belong to the facial nerve. These lower motor neurons innervate the muscles of facial expression and the stapedius.

<span class="mw-page-title-main">Fazio–Londe disease</span> Medical condition

Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves. FLD, along with Brown–Vialetto–Van Laere syndrome (BVVL), are the two forms of infantile progressive bulbar palsy, a type of progressive bulbar palsy in children.

<span class="mw-page-title-main">Dejerine–Sottas disease</span> Medical condition

Dejerine–Sottas disease, also known as, Dejerine–Sottas syndrome, hereditary motor and sensory polyneuropathy type III, and Charcot–Marie–Tooth disease type 3, is a hereditary neurological disorder characterized by damage to the peripheral nerves, demyelination, and resulting progressive muscle wasting and somatosensory loss. The condition is caused by mutations in various genes and currently has no known cure.

Progressive bulbar palsy (PBP) is a medical condition. It belongs to a group of disorders known as motor neuron diseases. PBP is a disease that attacks the nerves supplying the bulbar muscles. These disorders are characterized by the degeneration of motor neurons in the cerebral cortex, spinal cord, brain stem, and pyramidal tracts. This specifically involves the glossopharyngeal nerve (IX), vagus nerve (X), and hypoglossal nerve (XII).

<span class="mw-page-title-main">Foix–Chavany–Marie syndrome</span> Medical condition

Foix–Chavany–Marie syndrome (FCMS), also known as bilateral opercular syndrome, is a neuropathological disorder characterized by paralysis of the facial, tongue, pharynx, and masticatory muscles of the mouth that aid in chewing. The disorder is primarily caused by thrombotic and embolic strokes, which cause a deficiency of oxygen in the brain. As a result, bilateral lesions may form in the junctions between the frontal lobe and temporal lobe, the parietal lobe and cortical lobe, or the subcortical region of the brain. FCMS may also arise from defects existing at birth that may be inherited or nonhereditary. Symptoms of FCMS can be present in a person of any age and it is diagnosed using automatic-voluntary dissociation assessment, psycholinguistic testing, neuropsychological testing, and brain scanning. Treatment for FCMS depends on the onset, as well as on the severity of symptoms, and it involves a multidisciplinary approach.

<span class="mw-page-title-main">Flunarizine</span> Calcium channel blocker medication

Flunarizine, sold under the brand name Sibelium among others, is a drug classified as a calcium antagonist which is used for various indications. It is not available by prescription in the United States or Japan. The drug was discovered at Janssen Pharmaceutica (R14950) in 1968.

Alternating hemiplegia of childhood (AHC) is an ultra-rare neurological disorder named for the transient episodes, often referred to as "attacks", of hemiplegia that those with the condition experience. It typically presents before the age of 18 months. These hemiplegic attacks can cause anything from mild weakness to complete paralysis on one or both sides of the body, and they can vary greatly in duration. Attacks may also alternate from one side of the body to the other, or alternate between affecting one or both sides during a single attack. Besides hemiplegia, symptoms of the disorder include an extremely broad range of neurological and developmental impairments which are not well understood. Normally, hemiplegia and other associated symptoms cease completely with sleep, but they may recur upon waking.

<span class="mw-page-title-main">Brown-Séquard syndrome</span> Human spinal cord disorder

Brown-Séquard syndrome is caused by damage to one half of the spinal cord, i.e. hemisection of the spinal cord resulting in paralysis and loss of proprioception on the same side as the injury or lesion, and loss of pain and temperature sensation on the opposite side as the lesion. It is named after physiologist Charles-Édouard Brown-Séquard, who first described the condition in 1850.

Conjugate gaze palsies are neurological disorders affecting the ability to move both eyes in the same direction. These palsies can affect gaze in a horizontal, upward, or downward direction. These entities overlap with ophthalmoparesis and ophthalmoplegia.

A horizontal gaze palsy is a subtype of gaze palsy in which conjugate, horizontal eye movements are limited by neurologic deficits. Horizontal gaze palsies typically result from an ipsilateral pontine lesion or a contralateral frontal lobe lesion.

<span class="mw-page-title-main">Cranial nerve disease</span> Impaired functioning of one of the twelve cranial nerves

Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.

<span class="mw-page-title-main">Babinski–Nageotte syndrome</span> Medical condition

Babinski–Nageotte syndrome is an alternating brainstem syndrome. It occurs when there is damage to the dorsolateral or posterior lateral medulla oblongata, likely syphilitic in origin. Hence it is also called the alternating medulla oblongata syndrome.

References

  1. 1 2 3 "Alternating Hemiplegia Information Page". National Institute of Neurological Disorders and Stroke (NINDS). Archived from the original on 2011-05-14.
  2. Pritchard, Thomas C (1999). Medical Neuroscience (1st ed.). Baltimore, MD: Port City Press.
  3. 1 2 3 Haines, Duane E. (2004). Neuroanatomy: An Atlas of Structures, Sections, and Systems. RR Donnelley-Willard. ISBN   9780781746779.
  4. Heinzen, Erin L.; Swoboda, Kathryn J; Hitomi, Yuki; Gurrieri, Fiorella; et al. (September 2012). "De novo mutations in ATP1A3 cause alternating hemiplegia of childhood". Nature Genetics. 44 (9): 1030–1034. doi:10.1038/ng.2358. PMC   3442240 . PMID   22842232.
  5. "Cause of Alternating Hemiplegia Identified". UCL News. 2012-08-13. Retrieved 18 March 2013.
  6. 1 2 3 4 5 Neville, B.; M. Ninan (2007). "The treatment and management of alternating hemiplegia of childhood". Developmental Medicine & Child Neurology. 49 (10): 777–80. doi: 10.1111/j.1469-8749.2007.00777.x . PMID   17880649.
  7. Thomas-Sohl, Kristina A.; Vaslow, Dale F.; Maria, Bernard L. (2004). "Sturge-Weber syndrome: A review". Pediatric Neurology. 30 (5): 303–310. doi:10.1016/j.pediatrneurol.2003.12.015. PMID   15165630.