Antennae Galaxies

Last updated
Antennae Galaxies
Antennae Galaxies reloaded.jpg
Hubble Space Telescope image of NGC 4038 (top) and NGC 4039 (bottom)
Observation data (J2000 epoch)
Constellation Corvus [1]
Right ascension 12h 01m 53.0s / 12h 01m 53.6s [2]
Declination −18° 52 10 / −18° 53 11 [2]
Redshift 1642 ± 12 / 1641 ± 9 km/s [2]
Distance 45 Mly / 65 Mly
Apparent magnitude  (V)11.2 / 11.1 [2]
Characteristics
Type SB(s)m pec / SA(s)m pec [2]
Size500,000 ly (150 kpc) [3] [lower-alpha 1]
Apparent size  (V)5.2 × 3.1 / 3.1 × 1.6 [2]
Notable features Interacting galaxies
Other designations
Ringtail Galaxy, [2] NGC 4038 / 4039, [2]
PGC 37967 / 37969, Arp 244, [2] Caldwell  60/61, UGCA 264/265 [2]

The Antennae Galaxies (also known as NGC 4038/NGC 4039 or Caldwell 60/Caldwell 61) are a pair of interacting galaxies in the constellation Corvus. They are currently going through a starburst phase, in which the collision of clouds of gas and dust, with entangled magnetic fields, causes rapid star formation. They were discovered by William Herschel in 1785. [4]

Contents

General information

Visible light Hubble image (blue) showing newly formed young stars overlaid with a radio image from the Atacama Large Millimeter Array showing the clouds of dense cold gas from which new stars form (red, pink and yellow) Antennae Galaxies composite of ALMA and Hubble observations.jpg
Visible light Hubble image (blue) showing newly formed young stars overlaid with a radio image from the Atacama Large Millimeter Array showing the clouds of dense cold gas from which new stars form (red, pink and yellow)
Streams of stars and dust, resembling insect antennae, being ejected from both galaxies. The name Antennae Galaxies comes from this resemblance. NGC4038 Large 01.jpg
Streams of stars and dust, resembling insect antennae, being ejected from both galaxies. The name Antennae Galaxies comes from this resemblance.

The Antennae Galaxies are undergoing a galactic collision. Located in the NGC 4038 group with five other galaxies, these two galaxies are known as the Antennae Galaxies because the two long tails of stars, gas and dust ejected from the galaxies as a result of the collision resemble an insect's antennae.

The nuclei of the two galaxies are joining to become one giant galaxy. Most galaxies probably undergo at least one significant collision in their lifetimes. This is likely the future of our Milky Way when it collides with the Andromeda Galaxy. This collision and merger sequence (the Toomre sequence) for galaxy evolution was developed in part by successfully modeling the Antennae Galaxies' "antennae" in particular.

Five supernovae have been discovered in NGC 4038: SN 1921A, SN 1974E, SN 2004GT, SN 2007sr and SN 2013dk. [5]

A recent study finds that these interacting galaxies are less remote from the Milky Way than previously thought—at 45 million light-years instead of 65 million light-years. [6]

They are located 0.25° north of 31 Crateris and 3.25° southwest of Gamma Corvi. [7]

The Antennae galaxies also contain a relatively young collection of massive globular clusters that were possibly formed as a result of the collision between the two galaxies. [8] The young age of these clusters is in contrast to the average age of most known globular clusters (which are around 12 billion years old), with the formation of the globulars likely originating from shockwaves, generated by the collision of the galaxies, compressing large, massive molecular clouds. The densest regions of the collapsing and compressing clouds are believed to be the birthplace of the clusters.

Timeline

About 1.2 billion years ago, the Antennae were two separate galaxies. [9] NGC 4038 was a barred spiral galaxy and NGC 4039 was a spiral galaxy. 900 million years ago, the Antennae began to approach one another, looking similar to NGC 2207 and IC 2163. 600 million years ago, the Antennae passed through each other, looking like the Mice Galaxies. 300 million years ago, the Antennae's stars began to be released from both galaxies. Today the two streamers of ejected stars extend far beyond the original galaxies, resulting in the antennae shape. [10]

Within 400 million years, the Antennae's nuclei will collide and become a single core with stars, gas, and dust around it. [11] Observations and simulations of colliding galaxies (e.g., by Alar Toomre) suggest that the Antennae Galaxies will eventually form an elliptical galaxy. [9] [ page needed ]

X-ray source

Areas containing large amounts of neon (Ne), magnesium (Mg), and silicon (Si) were found when the Chandra X-ray Observatory analyzed the Antennae Galaxies. Heavy elements such as these are necessary in order for planets that may contain life (as we know it) to form. The clouds imaged contain 16 times as much magnesium and 24 times as much silicon as the Sun.

See also

Related Research Articles

<span class="mw-page-title-main">Star cluster</span> Group of stars

Star clusters are large groups of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely clustered groups of stars, generally containing fewer than a few hundred members, and are often very young. Open clusters become disrupted over time by the gravitational influence of giant molecular clouds as they move through the galaxy, but cluster members will continue to move in broadly the same direction through space even though they are no longer gravitationally bound; they are then known as a stellar association, sometimes also referred to as a moving group.

<span class="mw-page-title-main">Coma Berenices</span> Constellation in the northern hemisphere

Coma Berenices is an ancient asterism in the northern sky, which has been defined as one of the 88 modern constellations. It is in the direction of the fourth galactic quadrant, between Leo and Boötes, and it is visible in both hemispheres. Its name means "Berenice's Hair" in Latin and refers to Queen Berenice II of Egypt, who sacrificed her long hair as a votive offering. It was introduced to Western astronomy during the third century BC by Conon of Samos and was further corroborated as a constellation by Gerardus Mercator and Tycho Brahe. It is the only modern constellation named for a historic person.

<span class="mw-page-title-main">NGC 6240</span> Galaxy merger remnant in the constellation Ophiuchus

NGC 6240, also known as the Starfish Galaxy, is a nearby ultraluminous infrared galaxy (ULIRG) in the constellation Ophiuchus. The galaxy is the remnant of a merger between three smaller galaxies. The collision between the three progenitor galaxies has resulted in a single, larger galaxy with three distinct nuclei and a highly disturbed structure, including faint extensions and loops.

<span class="mw-page-title-main">Messier 61</span> Galaxy in the constellation Virgo

Messier 61 is an intermediate barred spiral galaxy in the Virgo Cluster of galaxies. It was first discovered by Barnaba Oriani on May 5, 1779, six days before Charles Messier discovered the same galaxy. Messier had observed it on the same night as Oriani but had mistaken it for a comet. Its distance has been estimated to be 45.61 million light years from the Milky Way Galaxy. It is a member of the M61 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster.

<span class="mw-page-title-main">Starburst galaxy</span> Galaxy undergoing an exceptionally high rate of star formation

A starburst galaxy is one undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formation rate of the Milky Way galaxy is approximately 3 M/yr, while starburst galaxies can experience star formation rates of 100 M/yr or more. In a starburst galaxy, the rate of star formation is so large that the galaxy will consume all of its gas reservoir, from which the stars are forming, on a timescale much shorter than the age of the galaxy. As such, the starburst nature of a galaxy is a phase, and one that typically occupies a brief period of a galaxy's evolution. The majority of starburst galaxies are in the midst of a merger or close encounter with another galaxy. Starburst galaxies include M82, NGC 4038/NGC 4039, and IC 10.

<span class="mw-page-title-main">Centaurus A</span> Radio galaxy in the constellation Centaurus

Centaurus A is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type and distance. NGC 5128 is one of the closest radio galaxies to Earth, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.

<span class="mw-page-title-main">Sculptor Galaxy</span> Intermediate spiral galaxy in the constellation Sculptor

The Sculptor Galaxy is an intermediate spiral galaxy in the constellation Sculptor. The Sculptor Galaxy is a starburst galaxy, which means that it is currently undergoing a period of intense star formation.

<span class="mw-page-title-main">NGC 6745</span> Galaxy in the constellation Lyra

NGC 6745 is an irregular galaxy about 206 million light-years away in the constellation Lyra. It is actually a trio of galaxies in the process of colliding.

<span class="mw-page-title-main">Interacting galaxy</span> Galaxies with interacting gravitational fields

Interacting galaxies are galaxies whose gravitational fields result in a disturbance of one another. An example of a minor interaction is a satellite galaxy disturbing the primary galaxy's spiral arms. An example of a major interaction is a galactic collision, which may lead to a galaxy merger.

<span class="mw-page-title-main">NGC 1316</span> Lenticular radio galaxy in the constellation Fornax

NGC 1316 is a lenticular galaxy about 60 million light-years away in the constellation Fornax. It is a radio galaxy and at 1400 MHz is the fourth-brightest radio source in the sky.

<span class="mw-page-title-main">NGC 3310</span> Galaxy in the constellation Ursa Major

NGC 3310 is a grand design spiral galaxy in the constellation Ursa Major. It is a starburst galaxy and it is likely that NGC 3310 collided with one of its satellite galaxies about 100 million years ago, triggering widespread star formation. It is thought to be located approximately 46 million light-years away from the Earth, and is thought to be about 22,000 light-years wide.

<span class="mw-page-title-main">NGC 2207 and IC 2163</span> Pair of colliding spiral galaxies in the constellation Canis Major

NGC 2207 and IC 2163 are a pair of colliding spiral galaxies about 80 million light-years away in the constellation Canis Major. Both galaxies were discovered by John Herschel in 1835.

<span class="mw-page-title-main">NGC 4027</span> Galaxy in the constellation Corvus

NGC 4027 is a barred spiral galaxy approximately 83 million light-years away in the constellation Corvus. It is also a peculiar galaxy because one of its spiral arms goes out more than the other. This is probably due to a galactic collision in NGC 4027's past.

<span class="mw-page-title-main">NGC 5253</span> Irregular galaxy in the M83 group of galaxies

NGC 5253 is an irregular galaxy in the constellation Centaurus. It was discovered by William Herschel on 15 March 1787.

<span class="mw-page-title-main">Galaxy merger</span> Merger whereby at least two galaxies collide

Galaxy mergers can occur when two galaxies collide. They are the most violent type of galaxy interaction. The gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. Galaxy mergers are important because the merger rate is a fundamental measurement of galaxy evolution. The merger rate also provides astronomers with clues about how galaxies bulked up over time.

<span class="mw-page-title-main">NGC 4261</span> Galaxy in the constellation Virgo

NGC 4261 is an elliptical galaxy located around 100 million light-years away in the constellation Virgo. It was discovered April 13, 1784, by the German-born astronomer William Herschel. The galaxy is a member of its own somewhat meager galaxy group known as the NGC 4261 group, which is part of the Virgo Cluster.

<span class="mw-page-title-main">Arp 271</span> Interacting galaxies in the constellation Virgo

Arp 271 is a pair of similarly sized interacting spiral galaxies, NGC 5426 and NGC 5427, in the constellation of Virgo. It is not certain whether the galaxies are going to eventually collide or not. They will continue interacting for tens of millions of years, creating new stars as a result of the mutual gravitational attraction between the galaxies, a pull seen in the bridge of stars already connecting the two. Located about 130 million light-years away, the Arp 271 pair is about 130,000 light-years across. It was originally discovered in 1785 by William Herschel. It is speculated, that the Milky Way will undergo a similar collision in about five billion years with the neighbouring Andromeda Galaxy, which is currently located about 2.6 million light-years away.

<span class="mw-page-title-main">NGC 2623</span> Interacting galaxy in the constellation Cancer

NGC 2623/Arp 243 is an interacting galaxy located in the constellation Cancer. NGC 2623 is the result of two spiral galaxies that have merged. Scientists believe that this situation is similar to what will occur to the Milky Way, which contains the Solar System, and the neighboring galaxy, the Andromeda Galaxy in four billion years. Studying this galaxy and its properties have provided scientists with a better idea of the coming collision of the Milky Way and the Andromeda. Due to NGC 2623 being in the late stage of merging, the compression of the gas within the galaxy has led to a large amount of star formation, and to its unique structure of a bright core with two extending tidal tails.

<span class="mw-page-title-main">NGC 6951</span> Galaxy in the constellation Cepheus

NGC 6951 is a barred spiral galaxy located in the constellation Cepheus. It is located at a distance of about 75 million light-years from Earth, which, given its apparent dimensions, means that NGC 6951 is about 100,000 light-years across. It was discovered by Jérôme Eugène Coggia in 1877 and independently by Lewis Swift in 1878.

<span class="mw-page-title-main">NGC 3597</span> Galaxy in the constellation Crater

NGC 3597 is a galaxy located approximately 150 million light-years away in the constellation of Crater. It was discovered by John Herschel on March 21, 1835.

References

  1. R. W. Sinnott, ed. (1988). The Complete New General Catalogue and Index Catalogue of Nebulae and Star Clusters by J. L. E. Dreyer. Sky Publishing Corporation and Cambridge University Press. ISBN   978-0-933346-51-2.
  2. 1 2 3 4 5 6 7 8 9 10 "NASA/IPAC Extragalactic Database". Results for NGC 4038 / 4039. Retrieved 2006-12-07.
  3. Astronomy Picture of the Day Archive (28 April 2017). "Exploring the Antennae" . Retrieved 2018-05-01.
  4. "Corvus". Universe Today. Retrieved 2006-12-07.
  5. "List of Supernovae". IAU Central Bureau for Astronomical Telegrams. Retrieved 2015-08-22.
  6. "The Antennae Galaxies Found To Be Closer To Us". Space Daily. 2008-05-12. Retrieved 2008-06-30.
  7. O'Meara, Stephen James (2002). The Caldwell Objects. Cambridge University Press. pp. 240–43. ISBN   978-0-521-82796-6.
  8. Van Den Bergh, Sidney (2001). "van den Bergh, How Did Globular Clusters Form?". The Astrophysical Journal. 559 (2): L113–L114. arXiv: astro-ph/0108298 . Bibcode:2001ApJ...559L.113V. doi:10.1086/323754. S2CID   44060272.
  9. 1 2 J. E. Barnes; L. Hernquist (1992). "Dynamics of interacting galaxies". Annual Review of Astronomy and Astrophysics. 30 (1): 705–742. Bibcode:1992ARA&A..30..705B. doi:10.1146/annurev.aa.30.090192.003421.
  10. Henderson, Edward (2019-12-18). "Caldwell 60/61". NASA. Retrieved 9 November 2021.
  11. Wilkins, Alasdair (2010-08-05). "Antennae Galaxies are slowly colliding in beautiful chaos of black holes". Gizmodo. Retrieved 9 November 2021.

Notes

  1. The quoted size is based on an assumed distance around 60 million ly although a more recent study gives a less remote distance of 45 million ly, giving consequently smaller values for the size.