BT Monocerotis

Last updated
BT Monocerotis
BTMonLocation.png
Location of BT Monocerotis (circled in red)
Observation data
Epoch J2000       Equinox J2000
Constellation Monoceros
Right ascension 06h 43m 47.242s [1]
Declination −02° 01 13.88 [1]
Apparent magnitude  (V)4.5 – 15.8 [2]
Characteristics
Spectral type D/G8V
Variable type Eclipsing binary [3]
Astrometry
Distance 1,413 ± 97 [4]   pc
Details
Mass 1.04/0.87 [3]   M
Rotational velocity (v sin i)—/138 [3]  km/s
Other designations
BT Mon, Nova Monocerotis 1939, 2MASS J06434723-0201139, AAVSO 0638-01, Gaia DR2 3106991818813980416
Database references
SIMBAD data

BT Monocerotis (Nova Monocerotis 1939) was a nova, which lit up in the constellation Monoceros in 1939. It was discovered on a spectral plate by Fred L. Whipple on December 23, 1939. [5] BT Monocerotis is believed to have reached mag 4.5, which would have made it visible to the naked eye, but that value is an extrapolation; the nova was not observed at peak brightness [2] Its brightness decreased after the outbreak by 3 magnitudes in 182 days, making it a "slow nova". [6] The light curve for the eruption had a long plateau period. [5]

Light curves for BT Monocerotis. The main plot, adapted from Schaefer and Patterson (1983), shows the decline from the 1939 nova eruption, and the inset plot, from TESS data, shows the post-eruption brightness fluctuations during an orbital period. BTMonLightCurve.png
Light curves for BT Monocerotis. The main plot, adapted from Schaefer and Patterson (1983), shows the decline from the 1939 nova eruption, and the inset plot, from TESS data, shows the post-eruption brightness fluctuations during an orbital period.

Photographic plates taken for 30 years prior to the eruption show that BT Monocerotis remained visible during that period. Prior to 1933, BT Monocerotis had an average magnitude of 15.52 with a variation of 1.2 magnitudes. It retained the same magnitude until the eruption, showing a variation of 0.9 magnitudes. Thus it did not show a pre-eruption rise in brightness. [5]

This is an interacting binary star system consisting of a 1.04±0.06M white dwarf primary star and a 0.87±0.06M main sequence star with a stellar classification of G8V. [9] The orbit has a period of 0.33381379 days [5] and an inclination of 88.2° to the line of sight to the Earth, resulting in an eclipsing binary. [3] The nova eruption is believed to have been driven by mass transferred from the secondary star to the white dwarf. [10] It remains uncertain whether the white dwarf has an accretion disk formed by this material. Matter outflowing from the system has a line of sight velocity of 450 km s−1, but may be moving at up to 3,200 km s−1 if the flow is strictly bipolar. [11]

Related Research Articles

<span class="mw-page-title-main">GK Persei</span> Star in the constellation Perseus

GK Persei was a bright nova first observed on Earth in 1901. It was discovered by Thomas David Anderson, an Edinburgh clergyman, at 02:40 UT on 22 February 1901 when it was at magnitude 2.7. It reached a maximum magnitude of 0.2, the brightest nova of modern times until Nova Aquilae 1918. After fading into obscurity at about magnitude 12 to 13 during the early 20th century, GK Persei began displaying infrequent outbursts of 2 to 3 magnitudes. Since about 1980, these outbursts have become quite regular, typically lasting about two months and occurring about every three years. Thus, GK Persei seems to have changed from a classical nova like Nova Aquilae 1918 to something resembling a typical dwarf nova-type cataclysmic variable star.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">DI Lacertae</span> 1910 Nova in the constellation Lacerta

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. Before the nova event DI Lacertae was a 14th magnitude star, and by 1950 it had returned to 14th magnitude.

<span class="mw-page-title-main">DK Lacertae</span> 1950 Nova seen in the constellation Lacerta

DK Lacertae was a nova, which lit up in the constellation Lacerta in 1950. The nova was discovered by Charles Bertaud of the Paris Observatory on a photographic plate taken on 23 January 1950. At the time of its discovery, it had an apparent magnitude of 6.1. DK Lacertae reached peak magnitude 5.0, making it easily visible to the naked eye.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">V1494 Aquilae</span> Nova seen in 1999 in the constellation of Aquila

V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.

<span class="mw-page-title-main">QU Vulpeculae</span> 1984 Nova seen in the constellation Vulpecula

QU Vulpeculae, also known as Nova Vulpeculae 1984 Number 2, was the second nova which occurred in 1984 in the constellation Vulpecula. It was discovered by Peter Collins, an amateur astronomer from Cardiff, California at 22:08 UT on 22 December 1984. At the time of its discovery, the nova's apparent magnitude was 6.8. By the next night, Collins reported its brightness had increased to magnitude 5.6, making it visible to the naked eye.

<span class="mw-page-title-main">SS Cygni</span> Variable star in the constellation Cygnus

SS Cygni is a variable star in the northern constellation Cygnus. It is the prototype of the subclass of dwarf novae that show only normal eruptions. It typically rises from 12th magnitude to 8th magnitude for 1–2 days every 7 or 8 weeks. The northerly declination of SS Cygni makes the star almost circumpolar from European and North American latitudes, allowing a large proportion of the world's amateur astronomers to monitor its behavior. Furthermore, since the star lies against the rich backdrop of the Milky Way band, the telescope field of view around SS Cygni contains an abundance of useful brightness comparison stars.

<span class="mw-page-title-main">RZ Gruis</span> Star in the constellation of Grus

RZ Gruis is a nova-like binary system in the constellation Grus composed of a white dwarf and an F-type main-sequence star. It is generally of apparent magnitude of 12.3 with occasional dimming to 13.4. Its components are thought to orbit each other roughly every 8.5 to 10 hours. It belongs to the UX Ursae Majoris subgroup of cataclysmic variable star systems, where material from the donor star is drawn to the white dwarf where it forms an accretion disc that remains bright and outshines the two component stars. The system is around 1,434 light-years away from Earth; or as much as 1,770 light years based on a Gaia parallax.

<span class="mw-page-title-main">HR Delphini</span> 1967 Nova seen in the constellation Delphinus

HR Delphini, also known as Nova Delphini 1967, was a nova which appeared in the constellation Delphinus in 1967. It was discovered by George Alcock at 22:35 UT on 8 July 1967, after searching the sky for over 800 hours with binoculars. At the time of discovery it had an apparent magnitude of 5.0. It reached a peak brightness of magnitude 3.5 on 13 December 1967, making it easily visible to the naked eye around that time. Pre-outburst photographs taken with the Samuel Oschin telescope showed it as a ~12th magnitude star which might have been variable.

<span class="mw-page-title-main">Q Cygni</span> 1876 Nova in the constellation Cygnus

Q Cygni, is a star located in the constellation Cygnus. It is also known as Nova Cygni 1876, and has the designation NGC 7114, and HR 8296. Nova Cygni is located in the northwestern portion of Cygnus along the border with Lacerta.

<span class="mw-page-title-main">BV Centauri</span> Star in the constellation Centaurus


BV Centauri is a cataclysmic variable binary star in the constellation Centaurus. It is a dwarf nova, and undergoes rapid increases in brightness that are recurrent with a mean period of 150 days. This period seems to have increased in the last few decades. During quiescence, its visual apparent magnitude is about 13, with variations of a few tenths of magnitude over an orbit due to differences in the star's visible surface area, brightening to a maximum magnitude of 10.7 during outbursts. From its luminosity, it is estimated that the system is about 500 parsecs (1,600 ly) away from Earth. A Gaia parallax of 2.81 mas has been measured, corresponding to about 360 pc.

<span class="mw-page-title-main">SU Ursae Majoris</span> Variable star in the constellation Ursa Major

SU Ursae Majoris, or SU UMa, is a close binary star in the northern circumpolar constellation of Ursa Major. It is a periodic cataclysmic variable that varies in magnitude from a peak of 10.8 down to a base of 14.96. The distance to this system, as determined from its annual parallax shift of 4.53 mas, is 719 light-years. It is moving further from the Earth with a heliocentric radial velocity of +27 km/s.

<span class="mw-page-title-main">V1315 Aquilae</span> Variable star in the constellation Aquila

V1315 Aquilae is a cataclysmic variable star in the north of the equatorial constellation of Aquila. It is in the sub-set of nova-like (NL) variables, specifically a SW Sextantis star. These were characterized as having non-magnetic white dwarfs – thus that do not undergo dwarf-nova bright luminations ("eruptions"). There is countering evidence for some magnetism. Being a SW Sextantis star, V1315 Aquilae has a high rate of mass transfer, so it is in steady-state accretion and in a constant state of outburst. It emits most of its light in the visible range, and this comes from the accretion disk. The eclipse depth is 1.8 mag. No description of the donor star is made.

<span class="mw-page-title-main">QZ Aurigae</span> Nova seen in 1964

QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.

<span class="mw-page-title-main">GI Monocerotis</span> 1918 Nova in the constellation Monoceros

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.

<span class="mw-page-title-main">OY Arae</span> 1910 nova in the constellation Ara

OY Arae, also known as Nova Arae 1910, is a nova in the constellation Ara. It was discovered by Williamina Fleming on a Harvard Observatory photographic plate taken on April 4, 1910. At that time it had a magnitude of 6.0, making it faintly visible to the naked eye under ideal observing conditions. Examination of earlier plates showed that before the outburst it was a magnitude 17.5 object, and by March 19, 1910, it had reached magnitude 12.

<span class="mw-page-title-main">DW Ursae Majoris</span> Variable star in the constellation Ursa Major

DW Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major, abbreviated DW UMa. It is a cataclysmic variable of the SX Sextanis type, consisting of a compact white dwarf that is accreting matter from an orbiting companion star. The brightness of this source ranges from an apparent visual magnitude of 13.6 down to magnitude 18, which is too faint to be viewed with the naked eye. The distance to this system is approximately 1,920 light years based on parallax measurements.

<span class="mw-page-title-main">ER Ursae Majoris</span> Variable binary star system in the constellation Ursa Major

ER Ursae Majoris is a variable star in the northern circumpolar constellation of Ursa Major, abbreviated ER UMa. It is a prototype system for a subclass of SU Ursae Majoris dwarf novae. The system ranges in brightness from a peak apparent visual magnitude of 12.4 down to 15.2, which is too faint to be visible to the naked eye. The distance to this system, based on parallax measurements, is approximately 1,163 light years.

<span class="mw-page-title-main">IW Andromedae</span> Star system in the constellation Andromeda

IW Andromedae is a binary star system in the northern constellation of Andromeda, abbreviated IW And. It is the prototype of a class of variable stars known as IW And variables, which is an anomalous sub-class of the Z Camelopardalis variables. The brightness of this system ranges from an apparent visual magnitude of 13.7 down to 17.3, which requires a telescope to view. The system is located at a distance of approximately 2,860 light years from the Sun based on parallax measurements.

References

  1. 1 2 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 Robinson, E.L. (July 1975). "Preeruption light curves of novae". The Astronomical Journal. 80: 515–524. Bibcode:1975AJ.....80..515R. doi:10.1086/111774 . Retrieved 26 December 2020.
  3. 1 2 3 4 Smith, D. A.; Dhillon, V. S.; Marsh, T. R. (1998). "The mass of the white dwarf in the old nova BT MON". In S. Howell; E. Kuulkers; C. Woodward (eds.). Wild Stars In The Old West: Proceedings of the 13th North American Workshop on Cataclysmic Variables and Related Objects. ASP Conference Series. Vol. 137. p. 477. Bibcode:1998ASPC..137..477S.
  4. Selvelli, Pierluigi; Gilmozzi, Roberto (February 2019). "A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD". Astronomy & Astrophysics. 622: A186. arXiv: 1903.05868 . Bibcode:2019A&A...622A.186S. doi: 10.1051/0004-6361/201834238 .
  5. 1 2 3 4 Collazzi, Andrew C.; et al. (December 2009). "The Behavior of Novae Light Curves Before Eruption". The Astronomical Journal. 138 (6): 1846–1873. arXiv: 0909.4289 . Bibcode:2009AJ....138.1846C. doi:10.1088/0004-6256/138/6/1846. S2CID   14597316.
  6. Özdönmez, Aykut; Ege, Ergün; Güver, Tolga; Ak, Tansel (May 2018). "A new catalogue of Galactic novae: investigation of the MMRD relation and spatial distribution". Monthly Notices of the Royal Astronomical Society. 476 (3): 4162–4186. arXiv: 1802.05725 . Bibcode:2018MNRAS.476.4162O. doi:10.1093/mnras/sty432 . Retrieved 26 December 2020.
  7. Schaefer, Bradley E.; Patterson, Joseph (May 1983). "Orbital periods of novae before eruption". The Astrophysical Journal. 268: 710–717. Bibcode:1983ApJ...268..710S. doi: 10.1086/160992 .
  8. "MAST: Barbara A. Mikulski Archive for Space Telescopes". Space Telescope Science Institute. Retrieved 8 December 2021.
  9. Smith, D.A.; Dhillon, V.S.; Marsh, T.R. (May 1998). "The mass of the white dwarf in the old nova BT MON". Monthly Notices of the Royal Astronomical Society. 296 (3): 465–482. arXiv: astro-ph/9709186 . Bibcode:1998MNRAS.296..465S. doi: 10.1046/j.1365-8711.1998.00743.x .
  10. Knigge, Christian (December 2006). "The donor stars of cataclysmic variables". Monthly Notices of the Royal Astronomical Society . 373 (2): 484–502. arXiv: astro-ph/0609671 . Bibcode:2006MNRAS.373..484K. doi:10.1111/j.1365-2966.2006.11096.x. S2CID   2616606.
  11. Kafka, S.; Honeycutt, R. K. (November 2004). "Detecting Outflows from Cataclysmic Variables in the Optical". The Astronomical Journal. 128 (5): 2420–2429. Bibcode:2004AJ....128.2420K. doi: 10.1086/424618 .