GI Monocerotis

Last updated
GI Monocerotis
GIMonBlink.gif
A Heidelberg Observatory photographic plate taken on 5 March 1918 showing the nova outburst of GI Monocerotis, compared with the same region photographed during the Sloan Digital Sky Survey more than 80 years later.
Observation data
Epoch J2000.0       Equinox J2000.0
Constellation Monoceros
Right ascension 07h 26m 47.107s [1]
Declination −06° 40 29.71 [1]
Apparent magnitude  (V)5.6 - 18 [2]
Characteristics
Variable type Nova
Astrometry
Proper motion (μ)RA: −2.955 [1]   mas/yr
Dec.: 0.550 [1]   mas/yr
Parallax (π)0.2880 ± 0.0446  mas [1]
Distance approx. 11,000  ly
(approx. 3,500  pc)
Absolute magnitude  (MV)−7.18 (max)
+3.62 (min) [3]
Details
White dwarf
Mass 0.95±0.1 [3]   M
Other designations
GI Mon, Nova Monocerotis 1918, HD 58756, AAVSO 0721-06 [4]
Database references
SIMBAD data
The location of GI Monocerotis (circled in red) GIMonLocation.png
The location of GI Monocerotis (circled in red)

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. [5] [6] By November 1920 it was a little fainter than 15th magnitude. [7]

The light curve of the GI Monocerotis. The blue points are photographic magnitudes measured at the Harvard College Observatory. If multiple measurements with identical times were reported, they were averaged before plotting The red points are visual magnitudes from the AAVSO. GIMonLightCurvve.png
The light curve of the GI Monocerotis. The blue points are photographic magnitudes measured at the Harvard College Observatory. If multiple measurements with identical times were reported, they were averaged before plotting The red points are visual magnitudes from the AAVSO.

A single pre-eruption photographic detection of GI Monocerotis exists, showing its magnitude was 15.1 before the nova event. [9] GI Monoceros dropped by 3 magnitudes from its peak in about 23 days, making it a "fast nova". [5] Long after the nova eruption, six small outbursts with a mean amplitude of 0.9 magnitudes were detected when the star was monitored from the year 1991 through 2000. [10] Radio emission from the nova has been detected at the JVLA in the C (5 GHz), X (8 GHz) and K (23 GHz) bands. [11]

All novae are binary stars, with a "donor" star orbiting a white dwarf. The two stars are so close together that matter is transferred from the donor star to the white dwarf. Worpel et al. report that the orbital period for the binary is probably 4.33 hours, and there is a 48.6 minute period which may represent the rotation period for the white dwarf. [12] Their X-ray observations indicate that GI Mon is a non-magnetic cataclysmic variable star, meaning that the material lost from the donor star forms an accretion disk around the white dwarf, rather than flowing directly to the surface of the white dwarf. It is estimated that the donor star is transferring 3×10−9  M of material to the accretion disk each year. [3]

A 1995 search for an optically resolved nova remnant using the Anglo-Australian Telescope was unsuccessful. [9]

Related Research Articles

<span class="mw-page-title-main">GK Persei</span> Star in the constellation Perseus

GK Persei was a bright nova first observed on Earth in 1901. It was discovered by Thomas David Anderson, an Edinburgh clergyman, at 02:40 UT on 22 February 1901 when it was at magnitude 2.7. It reached a maximum magnitude of 0.2, the brightest nova of modern times until Nova Aquilae 1918. After fading into obscurity at about magnitude 12 to 13 during the early 20th century, GK Persei began displaying infrequent outbursts of 2 to 3 magnitudes. Since about 1980, these outbursts have become quite regular, typically lasting about two months and occurring about every three years. Thus, GK Persei seems to have changed from a classical nova like Nova Aquilae 1918 to something resembling a typical dwarf nova-type cataclysmic variable star.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">DI Lacertae</span> 1910 Nova in the constellation Lacerta

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. Before the nova event DI Lacertae was a 14th magnitude star, and by 1950 it had returned to 14th magnitude.

<span class="mw-page-title-main">BT Monocerotis</span> Nova seen in 1939

BT Monocerotis was a nova, which lit up in the constellation Monoceros in 1939. It was discovered on a spectral plate by Fred L. Whipple on December 23, 1939. BT Monocerotis is believed to have reached mag 4.5, which would have made it visible to the naked eye, but that value is an extrapolation; the nova was not observed at peak brightness Its brightness decreased after the outbreak by 3 magnitudes in 182 days, making it a "slow nova". The light curve for the eruption had a long plateau period.

<span class="mw-page-title-main">DK Lacertae</span> 1950 Nova seen in the constellation Lacerta

DK Lacertae was a nova, which lit up in the constellation Lacerta in 1950. The nova was discovered by Charles Bertaud of the Paris Observatory on a photographic plate taken on 23 January 1950. At the time of its discovery, it had an apparent magnitude of 6.1. DK Lacertae reached peak magnitude 5.0, making it easily visible to the naked eye.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">V1494 Aquilae</span> Nova seen in 1999 in the constellation of Aquila

V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.

<span class="mw-page-title-main">V1059 Sagittarii</span> Nova seen in 1898 in the constellation Sagittarius

V1059 Sagittarii was a nova, which lit up in 1898 in the constellation Sagittarius. The star reached apparent magnitude 4.5, making it easily visible to the naked eye. It was discovered on 8 March 1898, by Williamina Fleming on a photographic plate taken at the Harvard College Observatory. The discovery plate was an objective prism plate, part of the Henry Draper Memorial Photographs, and Ms Fleming identified it as a nova based on its spectral characteristics.

<span class="mw-page-title-main">U Geminorum</span> Star in the constellation Gemini

U Geminorum, in the constellation Gemini, is an archetypal example of a dwarf nova. The binary star system consists of a white dwarf closely orbiting a red dwarf. Every few months it undergoes an outburst that greatly increases its brightness. The dwarf nova class of variable stars are often referred to as U Geminorum variables after this star.

<span class="mw-page-title-main">WZ Sagittae</span> Variable star in the constellation Sagitta

WZ Sagittae is a cataclysmic dwarf nova star system in the constellation Sagitta. It consists of a white dwarf primary being orbited by a low mass companion. The white dwarf is about 0.85 solar masses while the companion is only 0.08 solar masses. This implies that the companion is a spectral class L2 star, although this has yet to be confirmed. The distance to this system has been determined by parallax, yielding a distance of 45.1 parsecs.

<span class="mw-page-title-main">RX Andromedae</span> Cataclysmic variable star system in the constellation Andromeda

RX Andromedae is a variable star in the constellation of Andromeda. Although it is classified as a dwarf nova of the Z Camelopardalis (UGZ) type, it has shown low-luminosity periods typical of VY Sculptoris stars. However, for most of the time it varies from an apparent visual magnitude of 15.1 at minimum brightness to a magnitude of 10.2 at maximum brightness, with a period of approximately 13 days.

<span class="mw-page-title-main">RZ Gruis</span> Star in the constellation of Grus

RZ Gruis is a nova-like binary system in the constellation Grus composed of a white dwarf and an F-type main-sequence star. It is generally of apparent magnitude of 12.3 with occasional dimming to 13.4. Its components are thought to orbit each other roughly every 8.5 to 10 hours. It belongs to the UX Ursae Majoris subgroup of cataclysmic variable star systems, where material from the donor star is drawn to the white dwarf where it forms an accretion disc that remains bright and outshines the two component stars. The system is around 1,434 light-years away from Earth; or as much as 1,770 light years based on a Gaia parallax.

<span class="mw-page-title-main">RW Ursae Minoris</span> Nova that appeared in 1956

RW Ursae Minoris is a cataclysmic variable star system that flared up as a nova in the constellation Ursa Minor in 1956.

<span class="mw-page-title-main">Q Cygni</span> 1876 Nova in the constellation Cygnus

Q Cygni, is a star located in the constellation Cygnus. It is also known as Nova Cygni 1876, and has the designation NGC 7114, and HR 8296. Nova Cygni is located in the northwestern portion of Cygnus along the border with Lacerta.

<span class="mw-page-title-main">AR Andromedae</span> Star in the constellation Andromeda

AR Andromedae is a dwarf nova of the SS Cygni type in the constellation Andromeda. Its typical apparent visual magnitude is 17.6, but increases up to 11.0 magnitude during outbursts. The outbursts occur approximately every 23 days.

<span class="mw-page-title-main">LL Andromedae</span> Dwarf nova star in the constellation Andromeda

LL Andromedae is a dwarf nova in the constellation Andromeda, discovered during an outburst in 1979. Its typical apparent visual magnitude is 19.4, but undergoes outbursts events when can reach a peak magnitude of 14.3. Since this magnitude is reached during the most powerful outbursts, while less bright outbursts can occur, it is classified as a SU Ursae Majoris variable.

<span class="mw-page-title-main">PX Andromedae</span> Star in the constellation Andromeda

PX Andromedae is an eclipsing cataclysmic variable star in the constellation Andromeda. It has been classified as a SW Sextantis variable, and its apparent visual magnitude varies between 14.04 and 17.

<span class="mw-page-title-main">V368 Aquilae</span> Nova seen in 1936

V368 Aquilae, also known as Nova Aquilae 1936 no. 2 was the second nova which occurred in the constellation of Aquila during 1936. It was discovered on a photographic plate by Nils Tamm at Kvistaberg Observatory on 7 October 1936. At the time of discovery it was at photographic magnitude 7, and was already fading. Pre-discovery photographs showed that peak brightness occurred around 25 September 1936, at which time it had reached apparent magnitude 5.0, making it visible to the naked eye. The nova was described as being fiery red due to strong Hα emission, and for a time could be seen with binoculars simultaneously with V356 Aquilae, another nova which Nill Tamm had discovered a month earlier.

<span class="mw-page-title-main">BZ Ursae Majoris</span> Dwarf Nova in the constellation Ursa Major

BZ Ursae Majoris is a dwarf nova star system in the northern circumpolar constellation of Ursa Major. It consists of a white dwarf primary in a close orbit with a red dwarf. The latter star is donating mass, which is accumulating in an accretion disk orbiting the white dwarf. The system is located at a distance of approximately 505 light years from the Sun based on parallax measurements.

<span class="mw-page-title-main">OY Arae</span> 1910 nova in the constellation Ara

OY Arae, also known as Nova Arae 1910, is a nova in the constellation Ara. It was discovered by Williamina Fleming on a Harvard Observatory photographic plate taken on April 4, 1910. At that time it had a magnitude of 6.0, making it faintly visible to the naked eye under ideal observing conditions. Examination of earlier plates showed that before the outburst it was a magnitude 17.5 object, and by March 19, 1910, it had reached magnitude 12.

References

  1. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics . 649: A1. arXiv: 2012.01533 . Bibcode:2021A&A...649A...1G. doi: 10.1051/0004-6361/202039657 . S2CID   227254300. (Erratum:  doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  2. Downes, Ronald; Webbink, Ronald F.; Shara, Michael M. (April 1997). "A Catalog and Atlas of Cataclysmic Variables-Second Edition". Publications of the Astronomical Society of the Pacific. 109: 345–440. Bibcode:1997PASP..109..345D. doi: 10.1086/133900 . S2CID   120396435.
  3. 1 2 3 Selvelli, Pierluigi; Gilmozzi, Roberto (February 2019). "A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD". Astronomy & Astrophysics. 622: A186. arXiv: 1903.05868 . Bibcode:2019A&A...622A.186S. doi: 10.1051/0004-6361/201834238 . S2CID   119234563.
  4. "GI Mon". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 18 December 2020.
  5. 1 2 Duerbeck, Hilmar W. (March 1987). "A Reference Catalogue and Atlas of Galactic Novae". Space Science Reviews. 45 (1–2): 1–14. Bibcode:1987SSRv...45....1D. doi:10.1007/BF00187826. S2CID   115854775.
  6. Paddock, G.F. (June 1918). "Nova Monocerotis". Publications of the Astronomical Society of the Pacific. 30 (175): 189. Bibcode:1918PASP...30..189P. doi: 10.1086/122722 .
  7. Lampland, C.O. (January 1922). "Recent Photographic Observations of Several Well-Known Novae". Publications of the American Astronomical Society. 4: 221. Bibcode:1922PAAS....4..221L.
  8. Shapley, Harlow (January 1933). "The photographic light curves of 11 novae". Annals of the Astronomical Observatory of Harvard College. 84 (5): 121–155. Bibcode:1933AnHar..84..121S.
  9. 1 2 Robinson, E.L. (July 1975). "Preeruption light curves of novae". Astronomical Journal. 80: 515–524. Bibcode:1975AJ.....80..515R. doi:10.1086/111774.
  10. Honeycutt, R.K. (April 2001). "Similarities between Stunted Outbursts in Nova-like Cataclysmic Variables and Outbursts in Ordinary Dwarf Novae". The Publications of the Astronomical Society of the Pacific. 113 (782): 473–481. Bibcode:2001PASP..113..473H. doi: 10.1086/319543 . S2CID   123710633.
  11. Barrett, Paul E.; Dieck, Christopher; Beasley, Anthony J.; Singh, Kulinder P.; Mason, Paul A. (December 2017). "A Jansky VLA Survey of Magnetic Cataclysmic Variable Stars. I. The Data". Astronomical Journal. 154 (6): 252. arXiv: 1702.07631 . Bibcode:2017AJ....154..252B. doi: 10.3847/1538-3881/aa93ff . S2CID   119055826.
  12. Worpel, H.; Schwope, A.D.; Traulsen, I.; Mukai, K.; Ok, S. (July 2020). "XMM-Newton observations of eleven intermediate polars and possible candidates". Astronomy & Astrophysics. 639: A17. arXiv: 2005.12827 . Bibcode:2020A&A...639A..17W. doi:10.1051/0004-6361/202038038. S2CID   219741478.