Bacterial phyla

Last updated
Phylogenetic tree showing the diversity of Bacteria, Archaea, and Eukaryota. Major lineages are assigned arbitrary colours and named, with well-characterized lineage names, in italics. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots. A Novel Representation Of The Tree Of Life.png
Phylogenetic tree showing the diversity of Bacteria, Archaea, and Eukaryota. Major lineages are assigned arbitrary colours and named, with well-characterized lineage names, in italics. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots.

Bacterial phyla constitute the major lineages of the domain Bacteria . While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla. [2]

Contents

It has been estimated that ~1,300 bacterial phyla exist. [2] As of May 2020, 41 bacterial phyla are formally accepted by the LPSN, [3] 89 bacterial phyla are recognized on the Silva database, dozens more have been proposed, [4] [5] and hundreds likely remain to be discovered. [2] As of 2017, approximately 72% of widely recognized bacterial phyla were candidate phyla [6] (i.e. have no cultured representatives).

The rank of phylum has been included in the rules of the International Code of Nomenclature of Prokaryotes, using the ending –ota for phylum names that must be based on the name of a genus as its nomenclatural type. [7] [8]

List of bacterial phyla

The following is a list of bacterial phyla that have been validly published (not current).

PhylumAlternative namesGroupCultured representativeNotes
10bav-F6 [9] No
"Abawacabacteria" [4] [10] RIF46CPR; Gracilibacteria-related CPRNo
"Abditibacteriota" [11] FBPYes [11]
"Absconditabacteria" [12] [10] SR1CPR; Gracilibacteria-related CPRNo
ABY1 [13] OD1-ABY1 [14] CPR; ParcubacteriaNo
"Bipolaricaulota" [15] OP1, "Acetothermia"
Acidobacteriota "Acidobacteria"Yes [16]
Actinomycetota "Actinobacteria"TerrabacteriaYes [17]
"Adlerbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4No
"Aerophobota" / "Aerophobetes"CD12, BHI80-139
"Amesbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Andersenbacteria" [4] RIF9CPR; Parcubacteria; Parcubacteria 4-relatedNo
Armatimonadota [15] "Armatimonadetes", OP10TerrabacteriaYes [19]
"Aminicenantes" [15] OP8
AncK6 [9]
Apal-E12 [9]
Atribacterota [15] OP9, JS1No
Aquificota "Aquificae"
"Azambacteria" i [18] [10] CPR; Patescibacteria; Parcubacteria; unclassified ParcubacteriaNosplit by Anantharaman et al.
"Azambacteria" ii [18] [10] CPR; Patescibacteria; Parcubacteria; unclassified ParcubacteriaNo… (Oct 2016) as being polyphyletic
Bacteroidota "Bacteroidetes"FCB groupYes
Balneolota [20] Yes
Bdellovibrionota
"Beckwithbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Berkelbacteria" [21] [10] ACD58CPR; Saccharibacteria-related CPRNo
BHI80-139 [9]
"Blackburnbacteria" [4] RIF35CPR; MicrogenomatesNo
"Brennerbacteria" [4] [10] RIF18CPR; Parcubacteria; Parcubacteria 3No
"Brownbacteria" [22] CPR; Parcubacteria; unclassified ParcubacteriaNo
"Buchananbacteria" [4] [10] RIF37CPR; Parcubacteria; Parcubacteria 1No
Caldisericota [15] OP5, [23] "Caldiserica"FCB groupYes [24]
Calditrichota [25] FCB group [26]
"Calescamantes"EM19
"Campbellbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4Noseem to be polyphyletic: two clades
Campylobacterota
Chlamydiota "Chlamydiae" [27] PVC group
Chlorobiota "Chlorobi"FCB group
Chloroflexota "Chloroflexi""Terrabacteria"
Chisholmbacteria [4] RIF36CPR; "Microgenomates"No
Chrysiogenota "Chrysiogenetes"
"Cloacimonetes" [28] WWE1FCB group [26]
"Coatesbacteria" [4] RIF8No
"Collierbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Colwellbacteria" [4] [10] RIF41CPR; Parcubacteria; Parcubacteria 3No
Coprothermobacterota
"Curtissbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
CPR-1 [1] CPRNo
CPR-3 [1] CPRNo
"Cyanobacteria"Terrabacteria
"Dadabacteria" [29] No
"Daviesbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Delphibacteria" [6] FCB groupNo
"Delongbacteria" [4] RIF26, H-178No
Deferribacterota Deferribacteres
Deinococcota Deinococcus–ThermusTerrabacteria
"Dependentiae" [30] TM6
Dictyoglomota Dictyoglomi [31]
"Dojkabacteria" [10] WS6CPR; Microgenomates-related CPR
"Dormibacteraeota" [32] AD3No
"Doudnabacteria" [18] [10] SM2F11CPR; Parcubacteria; Parcubacteria 1-relatedNo
"Edwardsbacteria" [5] [4] RIF29, UBP-2 [33] No
"Eisenbacteria" [4] RIF28FCB groupNo
Elusimicrobiota Elusimicrobia, OP7, Termite Group 1 (TG1) [23] Yes [34]
"Eremiobacteraeota" [35] [32] WPS-2, Palusbacterota [36] No
"Falkowbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1No
"Fermentibacteria" [37] Hyd24-12No
"Fertabacteria" [6] CPR; Gracilibacteria-related CPRNo
Fibrobacterota "Fibrobacteres"FCB group
"Firestonebacteria" [4] RIF1No
"Fervidibacteria"OctSpa1-106
"Fischerbacteria" [4] RIF25No
Bacillota "Firmicutes"Terrabacteria
"Fraserbacteria" [4] RIF31No
Fusobacteriota "Fusobacteria"
Gemmatimonadota Gemmatimonadetes [38] FCB group [26] Yes [38]
"Glassbacteria" [4] RIF5No
"Giovannonibacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4-relatedNo
"Gottesmanbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Gracilibacteria" [39] [10] GN02, BD1-5, SN-2CPR; Patescibacteria; Gracilibacteria-related CPRNo
"Gribaldobacteria" [4] [10] CPR; Parcubacteria; Parcubacteria 2No
"Handelsmanbacteria" [4] RIF27No
"Harrisonbacteria" [4] [10] RIF43CPR; Parcubacteria; Parcubacteria 3No
"Howlettbacteria" [10] CPR; Saccharibacteria-related CPRNo
"Hugbacteria" [22] CPR; Parcubacteria; unclassified ParcubacteriaNo
"Hydrogenedentes"NKB19No
Ignavibacteriota "Ignavibacteria", ZB1FCB group
"Jacksonbacteria" [4] [10] RIF38CPR; Parcubacteria; Parcubacteria 1No
"Jorgensenbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 3No
"Kaiserbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4No
"Katanobacteria" [40] [10] WWE3CPR; Microgenomates-relatedNo
"Kazanbacteria" [10] [4] KazanCPR; Saccharibacteria-related CPRNo
"Kerfeldbacteria" [4] [10] RIF4CPR; Parcubacteria; Parcubacteria 1No
Kiritimatiellota
"Komeilibacteria" [4] [10] RIF6CPR; Parcubacteria; Parcubacteria 1Nosometimes misspelled as "Komelilbacteria" [4]
"Kryptonia" [41] No
KSB1No
"Krumholzibacteriota" [33]
"Kuenenbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1No
"Lambdaproteobacteria" [4] RIF24ProteobacteriaNo
"Latescibacteria"WS3FCB group [26] No
LCP-89 [42]
Lentisphaerota "Lentisphaerae", vadinBE97PVC group
"Levybacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Lindowbacteria" [4] RIF2CPR; Saccharibacteria-related CPRNo
"Liptonbacteria" [4] [10] RIF42CPR; Parcubacteria; Parcubacteria 3No
"Lloydbacteria" [4] [10] RIF45CPR; Parcubacteria; Parcubacteria 4No
"Magasanikbacteria" [18] [43] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1No
"Margulisbacteria" [4] RIF30No
"Marinimicrobia"SAR406, Marine Group AFCB group [26] Yes
"Melainabacteria" [44] No
"Microgenomates" [45] OP11CPR; PatescibacteriaNoSuperphylum
"Modulibacteria" [39] [46] KSB3, GN06No
"Moranbacteria" [18] [10] OD1-i [18] CPR; Patescibacteria; Parcubacteria; unclassified ParcubacteriaNo
"Muproteobacteria" [4] RIF23ProteobacteriaNo
Myxococcota
NC10 [47] [13] No
"Nealsonbacteria" [4] [10] RIF40CPR; Parcubacteria; Parcubacteria 2No
"Niyogibacteria" [4] RIF11CPR; Parcubacteria; Parcubacteria 4-relatedNo
Nitrospinota "Nitrospinae" [48] Yes [49] [50]
Nitrospirota "Nitrospirae"Yes
"Nomurabacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1No
"Omnitrophica" [15] OP3PVC groupNo
"Pacebacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Parcubacteria" [12] OD1CPRNoSuperphylum
"Parcubacteria" 1 [10] CPR; ParcubacteriaNo
"Parcubacteria" 2 [10] CPR; ParcubacteriaNo
"Parcubacteria" 3 [10] CPR; ParcubacteriaNo
"Parcubacteria" 4 [10] CPR; ParcubacteriaNo
"Parcunitrobacteria" [51] CPR; Parcubacteria; unclassified Parcubacteria [52] NoSuperphylum
PAUC34f [53] sponge‐associated unclassified lineage (SAUL)FCB group
"Peregrinibacteria" [54] [55] [56] [57] [10] PERCPR; Gracilibacteria-related CPRNo
"Peribacteria" [10] CPR; Gracilibacteria-related CPRNo
Planctomycetota "Planctomycetes"PVC group
"Poribacteria" [58] PVC group
"Portnoybacteria" [4] RIF22CPR; Parcubacteria; Parcubacteria 4-relatedNo
Pseudomonadota "Proteobacteria"
"Raymondbacteria" [4] RIF7No
Riflebacteria [4] RIF32No
Rhodothermota
"Roizmanbacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Rokubacteria" [29] No
"Ryanbacteria" [4] [10] RIF10CPR; Parcubacteria; Parcubacteri 4-relatedNo
"Saccharibacteria" [30] [10] TM7CPR; Saccharibacteria-related CPRYes
"Saltatorellota" [59]
"Schekmanbacteria" [4] RIF3ProteobacteriaNo
"Shapirobacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Spechtbacteria" [4] [10] RIF19CPR; Parcubacteria; Parcubacteria 2No
Spirochaetota "Spirochaetes"
"Staskawiczbacteria" [4] [10] RIF20CPR; Parcubacteria; Parcubacteria 2No
"Sumerlaeota" [60] [61] BRC1
"Sungbacteria" [4] [10] RIF17CPR; Parcubacteria; Parcubacteria 4-relatedNo
Synergistota "Synergistetes"
TA06 [62] No
"Tagabacteria" [4] [10] RIF12CPR; Parcubacteria; Parcubacteria 4-relatedNo
"Taylorbacteria" [4] [10] RIF16CPR; Parcubacteria; Parcubacteria 4No
"Tectomicrobia" [63]
Mycoplasmatota "Tenericutes"
"Terrybacteria" [4] [10] RIF13CPR; Parcubacteria; Parcubacteria 2No
Thermodesulfobacteriota "Thermodesulfobacteria"
Thermomicrobiota "Thermomicrobia"
Thermotogota "Thermotogae", OP2, EM3 [23] Yes [64]
"Torokbacteria" [10] CPR; Parcubacteria; unclssified ParcubacteriaNo
UBP-1 [5] No
UBP-3 [5] No
UBP-4 [5] No
UBP-5 [5] No
UBP-6 [5] No
UBP-7 [5] No
UBP-8 [5] No
UBP-9 [5] No
UBP-10 [5] No
UBP-11 [5] No
UBP-12 [5] No
UBP-13 [5] No
UBP-14 [5] No
UBP-15 [5] No
UBP-16 [5] No
UBP-17 [5] No
"Uhrbacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1Noseem to be polyphyletic: two clades
"Veblenbacteria" [4] RIF39CPR; Parcubacteria; Parcubacteria 1-relatedNo
Verrucomicrobiota "Verrucomicrobia"PVC group
"Vogelbacteria" [4] [10] RIF14CPR; Parcubacteria; Parcubacteria 4No
"Wallbacteria" [4] RIF33No
"Wildermuthbacteria" [4] [10] RIF21CPR; Parcubacteria; Parcubacteria 2No
"Wirthbacteria" [65] CPR-related bacteriaNo
"Woesebacteria" [18] CPR; Patescibacteria; MicrogenomatesNo
"Wolfebacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 3No
"Woykebacteria" [4] [22] RIF34CPR; MicrogenomatesNo
WOR-1 [62] No
WOR-2 [62] No
WOR-3 [62] No
"Yanofskybacteria" [18] [10] CPR; Patescibacteria; Parcubacteria; unclassified ParcubacteriaNo
"Yonathbacteria" [4] [10] RIF44CPR; Parcubacteria; Parcubacteria 4No
"Zambryskibacteria" [4] [10] RIF15CPR; Parcubacteria; Parcubacteria 4No
ZB2OD1-ZB2 [14] CPR; ParcubacteriaNo
"Zixibacteria" [66] FCB groupNo

Supergroups

Despite the unclear branching order for most bacterial phyla, several groups of phyla consistently cluster together and are referred to as supergroups or superphyla. In some instances, bacterial clades clearly consistently cluster together but it is unclear what to call the group. For example, the Candidate Phyla Radiation includes the Patescibacteria group which includes Microgenomates group which includes over 11 bacterial phyla.

Candidate phyla radiation (CPR)

The CPR is a descriptive term referring to a massive monophyletic radiation of candidate phyla that exists within the Bacterial domain. [67] It includes two main clades, the Microgenomates and Parcubacteria groups, each containing the eponymous superphyla and a few other phyla.

Patescibacteria

The superphylum Patescibacteria was originally proposed to encompass the phyla Microgenomates (OP11), Parcubacteria (OD1), and Gracilibacteria (GNO2 / BD1-5). [26] More recent phylogenetic analyses show that the last common ancestor of these taxa is the same node as that of CPR. [68]

Sphingobacteria

The Sphingobacteria (FCB group) includes Bacteroidota, Calditrichota, Chlorobiota, candidate phylum "Cloacimonetes", Fibrobacterota, Gemmatimonadota, Ignavibacteriota, candidate phylum "Latescibacteria", candidate phylum "Marinimicrobia", and candidate phylum "Zixibacteria". [26] [69]

Microgenomates

Microgenomates was originally thought to be a single phylum although evidence suggests it actually encompasses over 11 bacterial phyla, [18] [4] including Curtisbacteria, Daviesbacteria, Levybacteria, Gottesmanbacteria, Woesebacteria, Amesbacteria, Shapirobacteria, Roizmanbacteria, Beckwithbacteria, Collierbacteria, Pacebacteria.

Parcubacteria

Parcubacteria was originally described as a single phylum using fewer than 100 16S rRNA sequences. With a greater diversity of 16S rRNA sequences from uncultured organisms now available, it is estimated it may consist of up to 28 bacterial phyla. [2] In line with this, over 14 phyla have now been described within the Parcubacteria group, [18] [4] including Kaiserbacteria, Adlerbacteria, Campbellbacteria, Nomurabacteria, Giovannonibacteria, Wolfebacteria, Jorgensenbacteria, Yanofskybacteria, Azambacteria, Moranbacteria, Uhrbacteria, and Magasanikbacteria.

Proteobacteria

It has been proposed that some classes of the phylum Proteobacteria may be phyla in their own right, which would make Proteobacteria a superphylum. [70] For example, the Deltaproteobacteria group does not consistently form a monophyletic lineage with the other Proteobacteria classes. [71]

Planctobacteria

The Planctobacteria (PVC group) includes Chlamydiota, Lentisphaerota, candidate phylum "Omnitrophica", Planctomycetota, candidate phylum "Poribacteria", and Verrucomicrobiota. [26] [69]

Terrabacteria

The proposed superphylum, Terrabacteria, [72] includes Actinomycetota, "Cyanobacteria"/"Melainabacteria"-group, Deinococcota, Chloroflexota, Bacillota, and candidate phylum OP10. [72] [73] [26] [69]

Cryptic superphyla

Several candidate phyla (Microgenomates, Omnitrophica, Parcubacteria, and Saccharibacteria) and several accepted phyla (Elusimicrobiota, Caldisericota, and Armatimonadota) have been suggested to actually be superphyla that were incorrectly described as phyla because rules for defining a bacterial phylum are lacking or due to a lack of sequence diversity in databases when the phylum was first established. [2] For example, it is suggested that candidate phylum Parcubacteria is actually a superphylum that encompasses 28 subordinate phyla and that phylum Elusimicrobia is actually a superphylum that encompasses 7 subordinate phyla. [70]

Historical perspective

Atomic structure of the 30S ribosomal Subunit from Thermus thermophilus of which 16S makes up a part. Proteins are shown in blue and the single RNA strand in tan. 010 small subunit-1FKA.gif
Atomic structure of the 30S ribosomal Subunit from Thermus thermophilus of which 16S makes up a part. Proteins are shown in blue and the single RNA strand in tan.

Given the rich history of the field of bacterial taxonomy and the rapidity of changes therein in modern times, it is often useful to have a historical perspective on how the field has progressed in order to understand references to antiquated definitions or concepts.

When bacterial nomenclature was controlled under the Botanical Code, the term division was used, but now that bacterial nomenclature (with the exception of cyanobacteria) is controlled under the Bacteriological Code, the term phylum is preferred.

In 1987, Carl Woese, regarded as the forerunner of the molecular phylogeny revolution, divided Eubacteria into 11 divisions based on 16S ribosomal RNA (SSU) sequences, listed below. [75] [76]

Traditionally, phylogeny was inferred and taxonomy established based on studies of morphology. The advent of molecular phylogenetics has allowed for improved elucidation of the evolutionary relationship of species by analyzing their DNA and protein sequences, for example their ribosomal DNA. [87] The lack of easily accessible morphological features, such as those present in animals and plants, hampered early efforts of classification and resulted in erroneous, distorted and confused classification, an example of which, noted Carl Woese, is Pseudomonas whose etymology ironically matched its taxonomy, namely "false unit". [75] Many bacterial taxa were re-classified or re-defined using molecular phylogenetics.

The advent of molecular sequencing technologies has allowed for the recovery of genomes directly from environmental samples (i.e. bypassing culturing), leading to rapid expansion of our knowledge of the diversity of bacterial phyla. These techniques are genome-resolved metagenomics and single-cell genomics.

See also

Footnotes

  1. Until recently, it was believed than only Bacillota and Actinomycetota were Gram-positive. However, the candidate phylum TM7 may also be Gram positive. [78] Chloroflexi however possess a single bilayer, but stain negative (with some exceptions [79] ). [80]
  2. Pasteuria is now assigned to phylum Bacillota, not to phylum Planctomycetota.
  3. It has been proposed to call the clade Xenobacteria [83] or Hadobacteria [84] (the latter is considered an illegitimate name [85] ).

Related Research Articles

<span class="mw-page-title-main">Gram-positive bacteria</span> Bacteria that give a positive result in the Gram stain test

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

<span class="mw-page-title-main">Pseudomonadota</span> Phylum of Gram-negative bacteria

Pseudomonadota is a major phylum of Gram-negative bacteria. The renaming of several prokaryote phyla in 2021, including Pseudomonadota, remains controversial among microbiologists, many of whom continue to use the earlier name Proteobacteria, of long standing in the literature. The phylum Proteobacteria includes a wide variety of pathogenic genera, such as Escherichia, Salmonella, Vibrio, Yersinia, Legionella, and many others. Others are free-living (non-parasitic) and include many of the bacteria responsible for nitrogen fixation.

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

<span class="mw-page-title-main">Chlamydiota</span> Phylum of bacteria

The Chlamydiota are a bacterial phylum and class whose members are remarkably diverse, including pathogens of humans and animals, symbionts of ubiquitous protozoa, and marine sediment forms not yet well understood. All of the Chlamydiota that humans have known about for many decades are obligate intracellular bacteria; in 2020 many additional Chlamydiota were discovered in ocean-floor environments, and it is not yet known whether they all have hosts. Historically it was believed that all Chlamydiota had a peptidoglycan-free cell wall, but studies in the 2010s demonstrated a detectable presence of peptidoglycan, as well as other important proteins.

Fibrobacterota is a small bacterial phylum which includes many of the major rumen bacteria, allowing for the degradation of plant-based cellulose in ruminant animals. Members of this phylum were categorized in other phyla. The genus Fibrobacter was removed from the genus Bacteroides in 1988.

Dehalococcoides is a genus of bacteria within class Dehalococcoidia that obtain energy via the oxidation of hydrogen and subsequent reductive dehalogenation of halogenated organic compounds in a mode of anaerobic respiration called organohalide respiration. They are well known for their great potential to remediate halogenated ethenes and aromatics. They are the only bacteria known to transform highly chlorinated dioxins, PCBs. In addition, they are the only known bacteria to transform tetrachloroethene to ethene.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. All members of this class are Gram-negative. It is the most phylogenetically and physiologically diverse class of the Pseudomonadota.

<span class="mw-page-title-main">Terrabacteria</span> Taxon of land bacteria

Terrabacteria is a taxon containing approximately two-thirds of prokaryote species, including those in the gram positive phyla as well as the phyla "Cyanobacteria", Chloroflexota, and Deinococcota.

<span class="mw-page-title-main">Saccharibacteria</span> Bacterial lineage

Saccharibacteria, formerly known as TM7, is a major bacterial lineage. It was discovered through 16S rRNA sequencing.

<span class="mw-page-title-main">Zetaproteobacteria</span> Class of bacteria

The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Kamaʻehuakanaloa Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable.

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.

"Candidatus Scalindua" is a bacterial genus, and a proposed member of the order Planctomycetales. These bacteria lack peptidoglycan in their cell wall and have a compartmentalized cytoplasm. They are ammonium oxidizing bacteria found in marine environments.

Ruegeria pomeroyi is a species of Gram-negative, rod-shaped, aerobic dimethylsulfoniopropionate-demethylating bacterium. Its type strain is DSS-3T. Its genome has been sequenced.

The Microgenomatota or Microgenomates are a proposed supergroup of bacterial candidate phyla in the Candidate Phyla Radiation.

Gracilibacteria is a bacterial candidate phylum formerly known as GN02, BD1-5, or SN-2. It is part of the Candidate Phyla Radiation and the Patescibacteria group.

Zixibacteria is a bacterial phylum with candidate status, meaning it had no cultured representatives. It is a member of the FCB group

Katanobacteria is a bacterial phylum formerly known as WWE3. It has candidate status, meaning there are no cultured representatives, and is a member of the Candidate Phyla Radiation (CPR).

<span class="mw-page-title-main">NC10 phylum</span> Phylum of bacteria

NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors.

Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.

References

  1. 1 2 3 Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki; Ise, Kotaro; Suzuki, Yohey (11 April 2016). "A new view of the tree of life". Nature Microbiology. 1 (5): 16048. doi: 10.1038/nmicrobiol.2016.48 . ISSN   2058-5276. PMID   27572647.
  2. 1 2 3 4 5 Yarza, Pablo; Yilmaz, Pelin; Pruesse, Elmar; Glöckner, Frank Oliver; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Whitman, William B.; Euzéby, Jean; Amann, Rudolf; Rosselló-Móra, Ramon (September 2014). "Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences". Nature Reviews Microbiology. 12 (9): 635–645. doi:10.1038/nrmicro3330. ISSN   1740-1534. PMID   25118885. S2CID   21895693.
  3. Bacterial phyla in LPSN ; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi: 10.1099/ijsem.0.004332 .
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L. (24 October 2016). "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system". Nature Communications. 7 (1): 13219. Bibcode:2016NatCo...713219A. doi:10.1038/ncomms13219. ISSN   2041-1723. PMC   5079060 . PMID   27774985.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Parks, Donovan H.; Rinke, Christian; Chuvochina, Maria; Chaumeil, Pierre-Alain; Woodcroft, Ben J.; Evans, Paul N.; Hugenholtz, Philip; Tyson, Gene W. (November 2017). "Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life". Nature Microbiology. 2 (11): 1533–1542. doi: 10.1038/s41564-017-0012-7 . ISSN   2058-5276. PMID   28894102.
  6. 1 2 3 Dudek, Natasha K.; Sun, Christine L.; Burstein, David; Kantor, Rose S.; Aliaga Goltsman, Daniela S.; Bik, Elisabeth M.; Thomas, Brian C.; Banfield, Jillian F.; Relman, David A. (18 December 2017). "Novel Microbial Diversity and Functional Potential in the Marine Mammal Oral Microbiome". Current Biology. 27 (24): 3752–3762.e6. doi: 10.1016/j.cub.2017.10.040 . ISSN   1879-0445. PMID   29153320.
  7. Oren, Aharon; Arahal, David R.; Rosselló-Móra, Ramon; Sutcliffe, Iain C.; Moore, Edward R. B. (23 June 2021). "Emendation of Rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum". International Journal of Systematic and Evolutionary Microbiology. 71 (6). doi: 10.1099/ijsem.0.004851 . PMID   34161220. S2CID   235625014.
  8. Oren, Aharon; Garrity, George M. (20 October 2021). "Valid publication of the names of forty-two phyla of prokaryotes". International Journal of Systematic and Evolutionary Microbiology. 71 (10). doi: 10.1099/ijsem.0.005056 . PMID   34694987. S2CID   239887308.
  9. 1 2 3 4 "ARB-Silva: comprehensive ribosomal RNA database". The ARB development Team. Retrieved 2 January 2016.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Alexander L. Jaffe, Cindy J. Castelle, Paula B. Matheus Carnevali, Simonetta Gribaldo, Jillian F. Banfield: The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. In: BMC Biology Vol. 18, Nr. 69; June 2020); doi:10.1186/s12915-020-00804-5
  11. 1 2 Tahon, Guillaume; Tytgat, Bjorn; Lebbe, Liesbeth; Carlier, Aurélien; Willems, Anne (1 July 2018). "Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples". Systematic and Applied Microbiology. 41 (4): 279–290. doi:10.1016/j.syapm.2018.01.009. ISSN   0723-2020. PMID   29475572. S2CID   3515091.
  12. 1 2 Harris, J. Kirk; Kelley, Scott T.; Pace, Norman R. (February 2004). "New Perspective on Uncultured Bacterial Phylogenetic Division OP11". Applied and Environmental Microbiology. 70 (2): 845–849. Bibcode:2004ApEnM..70..845H. doi:10.1128/AEM.70.2.845-849.2004. ISSN   0099-2240. PMC   348892 . PMID   14766563.
  13. 1 2 Rappé, Michael S.; Giovannoni, Stephen J. (2003). "The Uncultured Microbial Majority". Annual Review of Microbiology. 57: 369–94. doi:10.1146/annurev.micro.57.030502.090759. PMID   14527284.
  14. 1 2 Kenly A. Hiller, Kenneth H. Foreman, David Weisman, Jennifer L. Bowen: Permeable Reactive Barriers Designed To Mitigate Eutrophication Alter Bacterial Community Composition and Aquifer Redox Conditions. In: Appl Environ Microbiol v.81(20); 2015 Oct; pp.7114–7124. doi:10.1128/AEM.01986-15. PMC   4579450. PMID   26231655.
  15. 1 2 3 4 5 6 Hugenholtz P; et al. (1998). "Novel division level bacterial diversity in a Yellowstone hot spring". Journal of Bacteriology. 180 (2): 366–76. doi:10.1128/JB.180.2.366-376.1998. PMC   106892 . PMID   9440526.
  16. Thrash, J. Cameron; Coates, John D. (2010), "Phylum XVII. Acidobacteria phyl. Nov.", Bergey’s Manual® of Systematic Bacteriology, Springer New York, pp. 725–735, doi:10.1007/978-0-387-68572-4_6, ISBN   978-0-387-95042-6
  17. Goodfellow, Michael (2012). "Phylum XXVI. Actinobacteria phyl. Nov.". Bergey's Manual® of Systematic Bacteriology. Springer New York. pp. 33–2028. doi:10.1007/978-0-387-68233-4_3. ISBN   978-0-387-95043-3.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Christopher T. Brown, Laura A. Hug, Brian C. Thomas et al.; et al. (2015). "Unusual biology across a group comprising more than 15% of domain Bacteria". Nature. 523 (7559): 208–11. Bibcode:2015Natur.523..208B. doi:10.1038/nature14486. OSTI   1512215. PMID   26083755. S2CID   4397558.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Tamaki, Hideyuki; Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Muramatsu, Mizuho; Meng, Xian-Ying; Hanada, Satoshi; Mori, Kazuhiro; Kamagata, Yoichi (June 2011). "Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10". International Journal of Systematic and Evolutionary Microbiology. 61 (Pt 6): 1442–1447. doi: 10.1099/ijs.0.025643-0 . ISSN   1466-5034. PMID   20622056.
  20. Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Klenk, Hans-Peter; Göker, Markus (2016). "Genome-Based Taxonomic Classification of Bacteroidetes". Frontiers in Microbiology. 7: 2003. doi: 10.3389/fmicb.2016.02003 . ISSN   1664-302X. PMC   5167729 . PMID   28066339.
  21. Wrighton, Kelly C.; Castelle, Cindy J.; Wilkins, Michael J.; Hug, Laura A.; Sharon, Itai; Thomas, Brian C.; Handley, Kim M.; Mullin, Sean W.; Nicora, Carrie D.; Singh, Andrea; Lipton, Mary S. (July 2014). "Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer". The ISME Journal. 8 (7): 1452–1463. doi:10.1038/ismej.2013.249. ISSN   1751-7370. PMC   4069391 . PMID   24621521.
  22. 1 2 3 Robert E. Danczak, M. D. Johnston, C. Kenah, M. Slattery, K. C. Wrighton, M. J. Wilkins (September 2017). "Members of the candidate phyla radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities". Microbiome. 5 (1): 112. doi: 10.1186/s40168-017-0331-1 . PMC   5581439 . PMID   28865481.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. 1 2 3 Dunfield, Peter F.; Tamas, Ivica; Lee, Kevin C.; Morgan, Xochitl C.; McDonald, Ian R.; Stott, Matthew B. (2012). "Electing a candidate: a speculative history of the bacterial phylum OP10". Environmental Microbiology. 14 (12): 3069–3080. doi: 10.1111/j.1462-2920.2012.02742.x . ISSN   1462-2920. PMID   22497633.
  24. Mori, K.; Yamaguchi, K.; Sakiyama, Y.; Urabe, T.; Suzuki, K.-i. (23 July 2009). "Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov". International Journal of Systematic and Evolutionary Microbiology. 59 (11): 2894–2898. doi: 10.1099/ijs.0.010033-0 . ISSN   1466-5026. PMID   19628600.
  25. Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia; Daum, Chris; Reddy, T.B.K.; Klenk, Hans-Peter (20 February 2017). "Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota". Frontiers in Microbiology. 8: 195. doi: 10.3389/fmicb.2017.00195 . ISSN   1664-302X. PMC   5317091 . PMID   28265262.
  26. 1 2 3 4 5 6 7 8 9 Rinke C; et al. (2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499 (7459): 431–7. Bibcode:2013Natur.499..431R. doi: 10.1038/nature12352 . hdl: 10453/27467 . PMID   23851394.
  27. Boone, David R.; Castenholz, Richard W.; Garrity, George M., eds. (2001). Bergey's Manual® of Systematic Bacteriology. doi:10.1007/978-0-387-21609-6. ISBN   978-1-4419-3159-7. S2CID   41426624.
  28. Chouari, Rakia; Le Paslier, Denis; Dauga, Catherine; Daegelen, Patrick; Weissenbach, Jean; Sghir, Abdelghani (April 2005). "Novel Major Bacterial Candidate Division within a Municipal Anaerobic Sludge Digester". Applied and Environmental Microbiology. 71 (4): 2145–2153. Bibcode:2005ApEnM..71.2145C. doi:10.1128/aem.71.4.2145-2153.2005. ISSN   0099-2240. PMC   1082523 . PMID   15812049.
  29. 1 2 Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; Brown, Christopher T.; Sharma, Ritin; Hettich, Robert L.; Wilkins, Michael J.; Williams, Kenneth H.; Singh, Andrea; Banfield, Jillian F. (2016). "Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages". Environmental Microbiology. 18 (1): 159–173. doi:10.1111/1462-2920.12930. ISSN   1462-2920. OSTI   1328276. PMID   26033198. S2CID   43160538.
  30. 1 2 Rheims, H; Rainey, F A; Stackebrandt, E (September 1996). "A molecular approach to search for diversity among bacteria in the environment". Journal of Industrial Microbiology & Biotechnology. 17 (3–4): 159–169. doi: 10.1007/bf01574689 . ISSN   0169-4146. S2CID   31868442.
  31. Patel, Bharat K. C. (2010). "Phylum XX. Dictyoglomi phyl. Nov.". Bergey's Manual® of Systematic Bacteriology. Springer New York. pp. 775–780. doi:10.1007/978-0-387-68572-4_9. ISBN   978-0-387-95042-6.
  32. 1 2 Ji, Mukan; Greening, Chris; Vanwonterghem, Inka; Carere, Carlo R.; Bay, Sean K.; Steen, Jason A.; Montgomery, Kate; Lines, Thomas; Beardall, John; van Dorst, Josie; Snape, Ian (December 2017). "Atmospheric trace gases support primary production in Antarctic desert surface soil". Nature. 552 (7685): 400–403. Bibcode:2017Natur.552..400J. doi: 10.1038/nature25014 . hdl: 2440/124244 . ISSN   1476-4687. PMID   29211716.
  33. 1 2 Youssef, Noha H.; Farag, Ibrahim F.; Hahn, C. Ryan; Premathilake, Hasitha; Fry, Emily; Hart, Matthew; Huffaker, Krystal; Bird, Edward; Hambright, Jimmre; Hoff, Wouter D.; Elshahed, Mostafa S. (1 January 2019). "Candidatus Krumholzibacterium zodletonense gen. nov., sp nov, the first representative of the candidate phylum Krumholzibacteriota phyl. nov. recovered from an anoxic sulfidic spring using genome resolved metagenomics". Systematic and Applied Microbiology. Taxonomy of uncultivated Bacteria and Archaea. 42 (1): 85–93. doi:10.1016/j.syapm.2018.11.002. ISSN   0723-2020. PMID   30477901.
  34. Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A. (1 May 2009). "Genomic Analysis of "Elusimicrobium minutum," the First Cultivated Representative of the Phylum "Elusimicrobia" (Formerly Termite Group 1)". Applied and Environmental Microbiology. 75 (9): 2841–2849. Bibcode:2009ApEnM..75.2841H. doi:10.1128/AEM.02698-08. ISSN   0099-2240. PMC   2681670 . PMID   19270133.
  35. Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N. (1 April 2001). "Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil". Applied and Environmental Microbiology. 67 (4): 1874–1884. Bibcode:2001ApEnM..67.1874N. doi:10.1128/AEM.67.4.1874-1884.2001. ISSN   0099-2240. PMC   92809 . PMID   11282645.
  36. Ward, Lewis M.; Cardona, Tanai; Holland-Moritz, Hannah (29 January 2019). "Evolutionary Implications of Anoxygenic Phototrophy in the Bacterial Phylum Candidatus Palusbacterota (WPS-2)". doi: 10.1101/534180 . S2CID   92796436.{{cite journal}}: Cite journal requires |journal= (help)
  37. Knittel, Katrin; Boetius, Antje; Lemke, Andreas; Eilers, Heike; Lochte, Karin; Pfannkuche, Olaf; Linke, Peter; Amann, Rudolf (July 2003). "Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon)". Geomicrobiology Journal. 20 (4): 269–294. Bibcode:2003GmbJ...20..269K. doi:10.1080/01490450303896. hdl: 21.11116/0000-0001-D20F-2 . ISSN   0149-0451. S2CID   140639772.
  38. 1 2 Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori (2003). "Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov". International Journal of Systematic and Evolutionary Microbiology. 53 (4): 1155–1163. doi: 10.1099/ijs.0.02520-0 . ISSN   1466-5026. PMID   12892144.
  39. 1 2 Ley, Ruth E.; Harris, J. Kirk; Wilcox, Joshua; Spear, John R.; Miller, Scott R.; Bebout, Brad M.; Maresca, Julia A.; Bryant, Donald A.; Sogin, Mitchell L.; Pace, Norman R. (1 May 2006). "Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat". Applied and Environmental Microbiology. 72 (5): 3685–3695. Bibcode:2006ApEnM..72.3685L. doi:10.1128/AEM.72.5.3685-3695.2006. ISSN   0099-2240. PMC   1472358 . PMID   16672518.
  40. Guermazi, Sonda; Daegelen, Patrick; Dauga, Catherine; Rivière, Delphine; Bouchez, Théodore; Godon, Jean Jacques; Gyapay, Gábor; Sghir, Abdelghani; Pelletier, Eric; Weissenbach, Jean; Le Paslier, Denis (August 2008). "Discovery and characterization of a new bacterial candidate division by an anaerobic sludge digester metagenomic approach". Environmental Microbiology. 10 (8): 2111–2123. doi:10.1111/j.1462-2920.2008.01632.x. ISSN   1462-2912. PMC   2702496 . PMID   18459975.
  41. Eloe-Fadrosh, Emiley A.; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F.; Hedlund, Brian P.; Dekas, Anne E.; Grasby, Stephen E.; Brady, Allyson L.; Dong, Hailiang; Briggs, Brandon R.; Li, Wen-Jun (27 January 2016). "Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs". Nature Communications. 7 (1): 10476. Bibcode:2016NatCo...710476E. doi:10.1038/ncomms10476. ISSN   2041-1723. PMC   4737851 . PMID   26814032.
  42. Youssef, Noha H.; Farag, Ibrahim F.; Hahn, C. Ryan; Jarett, Jessica; Becraft, Eric; Eloe-Fadrosh, Emiley; Lightfoot, Jorge; Bourgeois, Austin; Cole, Tanner; Ferrante, Stephanie; Truelock, Mandy (15 May 2019). "Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities". Applied and Environmental Microbiology. 85 (10). Bibcode:2019ApEnM..85E.110Y. doi:10.1128/AEM.00110-19. ISSN   0099-2240. PMC   6498177 . PMID   30902854.
  43. NCBI: Candidatus Magasanikbacteria (phylum)
  44. Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E (1 October 2013). "The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria". eLife. 2: e01102. doi: 10.7554/eLife.01102 . ISSN   2050-084X. PMC   3787301 . PMID   24137540.
  45. Hugenholtz, Philip; Goebel, Brett M.; Pace, Norman R. (15 December 1998). "Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity". Journal of Bacteriology. 180 (24): 4765–74. doi: 10.1128/jb.180.24.6793-6793.1998 . ISSN   1098-5530. PMC   107498 . PMID   9733676.
  46. Sekiguchi, Yuji; Ohashi, Akiko; Parks, Donovan H.; Yamauchi, Toshihiro; Tyson, Gene W.; Hugenholtz, Philip (27 January 2015). "First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking". PeerJ. 3: e740. doi: 10.7717/peerj.740 . ISSN   2167-8359. PMC   4312070 . PMID   25650158.
  47. Holmes, Andrew J.; Tujula, Niina A.; Holley, Marita; Contos, Annalisa; James, Julia M.; Rogers, Peter; Gillings, Michael R. (2001). "Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia". Environmental Microbiology. 3 (4): 256–264. doi:10.1046/j.1462-2920.2001.00187.x. ISSN   1462-2920. PMID   11359511.
  48. Luecker, Sebastian; Nowka, Boris; Rattei, Thomas; Spieck, Eva; Daims, Holger (2013). "The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer". Frontiers in Microbiology. 4: 27. doi: 10.3389/fmicb.2013.00027 . ISSN   1664-302X. PMC   3578206 . PMID   23439773.
  49. Mueller, Anna J.; Jung, Man-Young; Strachan, Cameron R.; Herbold, Craig W.; Kirkegaard, Rasmus H.; Wagner, Michael; Daims, Holger (March 2021). "Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting". The ISME Journal. 15 (3): 732–745. doi: 10.1038/s41396-020-00809-6 . ISSN   1751-7362. PMC   8026999 . PMID   33067588.
  50. Spieck, Eva; Keuter, Sabine; Wenzel, Thilo; Bock, Eberhard; Ludwig, Wolfgang (May 2014). "Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae"". Systematic and Applied Microbiology. 37 (3): 170–176. doi:10.1016/j.syapm.2013.12.005. PMID   24581679.
  51. LPSN: Phylum "Candidatus Parcunitrobacteria"
  52. Cindy J. Castelle, Christopher T. Brown, Brian C. Thomas, Kenneth H. Williams, Jillian F. Banfield: Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation. In: Sci Rep 7, 40101; Jan 9, 2017; doi:10.1038/srep40101
  53. Astudillo‐García, Carmen; Slaby, Beate M.; Waite, David W.; Bayer, Kristina; Hentschel, Ute; Taylor, Michael W. (2018). "Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges" (PDF). Environmental Microbiology. 20 (2): 561–576. doi:10.1111/1462-2920.13965. ISSN   1462-2920. PMID   29098761. S2CID   23892350.
  54. Wrighton, K. C.; Thomas, B. C.; Sharon, I.; Miller, C. S.; Castelle, C. J.; VerBerkmoes, N. C.; Wilkins, M. J.; Hettich, R. L.; Lipton, M. S.; Williams, K. H.; Long, P. E. (27 September 2012). "Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla". Science. 337 (6102): 1661–1665. Bibcode:2012Sci...337.1661W. doi:10.1126/science.1224041. ISSN   0036-8075. PMID   23019650. S2CID   10362580.
  55. NCBI: Candidatus Peregrinibacteria (phylum)
  56. UniProt: Taxonomy - Candidatus Peregrinibacteria (PHYLUM)
  57. Karthik Anantharaman, Christopher T. Brown, David Burstein, Cindy Castelle: Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. In: PeerJ 4(8):e1607; Jan 2016; doi:10.7717/peerj.1607
  58. Fieseler, Lars; Horn, Matthias; Wagner, Michael; Hentschel, Ute (June 2004). "Discovery of the Novel Candidate Phylum "Poribacteria" in Marine Sponges". Applied and Environmental Microbiology. 70 (6): 3724–3732. Bibcode:2004ApEnM..70.3724F. doi:10.1128/AEM.70.6.3724-3732.2004. ISSN   0099-2240. PMC   427773 . PMID   15184179.
  59. Wiegand, Sandra; Jogler, Mareike; Kohn, Timo; Awal, Ram Prasad; Oberbeckmann, Sonja; Kesy, Katharina; Jeske, Olga; Schumann, Peter; Peeters, Stijn H. (24 October 2019). "The novel shapeshifting bacterial phylum Saltatorellota". doi:10.1101/817700. S2CID   208566371.{{cite journal}}: Cite journal requires |journal= (help)
  60. Derakshani, Manigee; Lukow, Thomas; Liesack, Werner (1 February 2001). "Novel Bacterial Lineages at the (Sub)Division Level as Detected by Signature Nucleotide-Targeted Recovery of 16S rRNA Genes from Bulk Soil and Rice Roots of Flooded Rice Microcosms". Applied and Environmental Microbiology. 67 (2): 623–631. Bibcode:2001ApEnM..67..623D. doi:10.1128/aem.67.2.623-631.2001. ISSN   1098-5336. PMC   92629 . PMID   11157225.
  61. Kadnikov, Vitaly V.; Mardanov, Andrey V.; Beletsky, Alexey V.; Rakitin, Andrey L.; Frank, Yulia A.; Karnachuk, Olga V.; Ravin, Nikolai V. (January 2019). "Phylogeny and physiology of candidate phylum BRC1 inferred from the first complete metagenome-assembled genome obtained from deep subsurface aquifer". Systematic and Applied Microbiology. 42 (1): 67–76. doi:10.1016/j.syapm.2018.08.013. ISSN   1618-0984. PMID   30201528. S2CID   52183718.
  62. 1 2 3 4 Baker, Brett J.; Lazar, Cassandre Sara; Teske, Andreas P.; Dick, Gregory J. (13 April 2015). "Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria". Microbiome. 3 (1): 14. doi: 10.1186/s40168-015-0077-6 . ISSN   2049-2618. PMC   4411801 . PMID   25922666.
  63. Wilson, Micheal C.; Mori, Tetsushi; Rückert, Christian; Uria, Agustinus R.; Helf, Maximilian J.; Takada, Kentaro; Gernert, Christine; Steffens, Ursula A. E.; Heycke, Nina; Schmitt, Susanne; Rinke, Christian (February 2014). "An environmental bacterial taxon with a large and distinct metabolic repertoire". Nature. 506 (7486): 58–62. Bibcode:2014Natur.506...58W. doi: 10.1038/nature12959 . ISSN   1476-4687. PMID   24476823.
  64. Reysenbach, Anna-Louise; Huber, Robert; Stetter, Karl O.; Davey, Mary Ellen; MacGregor, Barbara J.; Stahl, David A. (2001), "Phylum BII. Thermotogae phy. Nov.", Bergey’s Manual® of Systematic Bacteriology, Springer New York, pp. 369–387, doi:10.1007/978-0-387-21609-6_19, ISBN   978-1-4419-3159-7
  65. Probst, AJ; Castelle, CJ; Singh, A; Brown, CT; Anantharaman, K; Sharon, I; Hug, LA; Burstein, D; Emerson, JB; Thomas, BC; Banfield, JF (February 2017). "Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations". Environmental Microbiology. 19 (2): 459–474. doi:10.1111/1462-2920.13362. OSTI   1567074. PMID   27112493. S2CID   21126011.
  66. Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; Thomas, Brian C.; Williams, Kenneth H.; Wu, Dongying; Tringe, Susannah G.; Singer, Steven W.; Eisen, Jonathan A.; Banfield, Jillian F. (27 August 2013). "Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment". Nature Communications. 4 (1): 2120. Bibcode:2013NatCo...4.2120C. doi:10.1038/ncomms3120. ISSN   2041-1723. PMC   3903129 . PMID   23979677.
  67. Castelle CJ, Banfield JF (March 2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell. 172 (6): 1181–1197. doi: 10.1016/j.cell.2018.02.016 . PMID   29522741.
  68. Castelle, Cindy J.; Banfield, Jillian F. (8 March 2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell. 172 (6): 1181–1197. doi: 10.1016/j.cell.2018.02.016 . ISSN   0092-8674. PMID   29522741.
  69. 1 2 3 Sekiguchi Y; et al. (2015). "First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking". PeerJ . 3: e740. doi: 10.7717/peerj.740 . PMC   4312070 . PMID   25650158.
  70. 1 2 Yarza P; et al. (2014). "Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences". Nature Reviews Microbiology. 12 (9): 635–645. doi:10.1038/nrmicro3330. hdl:10261/123763. PMID   25118885. S2CID   21895693.
  71. Hug LA; et al. (2016). "A new view of the tree of life". Nature Microbiology. Article 16048 (5): 16048. doi: 10.1038/nmicrobiol.2016.48 . PMID   27572647.
  72. 1 2 Battistuzzi FU, Feijao A, Hedges SB (November 2004). "A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land". BMC Evolutionary Biology. 4: 44. doi: 10.1186/1471-2148-4-44 . PMC   533871 . PMID   15535883.
  73. Battistuzzi, F. U.; Hedges, S. B. (6 November 2008). "A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land". Molecular Biology and Evolution. 26 (2): 335–343. doi:10.1093/molbev/msn247. PMID   18988685.
  74. Schluenzen F; et al. (2000). "Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution". Cell. 102 (5): 615–23. doi: 10.1016/S0092-8674(00)00084-2 . PMID   11007480. S2CID   1024446.
  75. 1 2 Woese, CR (1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–71. doi:10.1128/MMBR.51.2.221-271.1987. PMC   373105 . PMID   2439888.
  76. Holland L (22 May 1990). "Carl Woese in forefront of bacterial evolution revolution". The Scientist. 3 (10).
  77. Stackebrandt; et al. (1988). "Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives"". Int. J. Syst. Bacteriol. 38 (3): 321–325. doi: 10.1099/00207713-38-3-321 .
  78. Hugenholtz, P.; Tyson, G. W.; Webb, R. I.; Wagner, A. M.; Blackall, L. L. (2001). "Investigation of Candidate Division TM7, a Recently Recognized Major Lineage of the Domain Bacteria with No Known Pure-Culture Representatives". Applied and Environmental Microbiology. 67 (1): 411–9. Bibcode:2001ApEnM..67..411H. doi:10.1128/AEM.67.1.411-419.2001. PMC   92593 . PMID   11133473.
  79. Yabe, S.; Aiba, Y.; Sakai, Y.; Hazaka, M.; Yokota, A. (2010). "Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria". International Journal of Systematic and Evolutionary Microbiology. 61 (4): 903–910. doi: 10.1099/ijs.0.024877-0 . PMID   20495028.
  80. Sutcliffe, I. C. (2011). "Cell envelope architecture in the Chloroflexi: A shifting frontline in a phylogenetic turf war". Environmental Microbiology. 13 (2): 279–282. doi:10.1111/j.1462-2920.2010.02339.x. PMID   20860732.
  81. 1 2 Stackebrandt, E.; Rainey, F. A.; Ward-Rainey, N. L. (1997). "Proposal for a New Hierarchic Classification System, Actinobacteria classis nov". International Journal of Systematic Bacteriology. 47 (2): 479–491. doi: 10.1099/00207713-47-2-479 .
  82. J.P. Euzéby. "List of Prokaryotic names with Standing in Nomenclature: classification of Deinococcus–Thermus". Archived from the original on 27 January 2013. Retrieved 30 December 2010.
  83. Bergey's Manual of Systematic Bacteriology 1st Ed.
  84. Cavalier-Smith, T (2002). "The neomuran origin of Archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". International Journal of Systematic and Evolutionary Microbiology. 52 (Pt 1): 7–76. doi: 10.1099/00207713-52-1-7 . PMID   11837318.
  85. "List of Prokaryotic names with Standing in Nomenclature—Class Hadobacteria". LPSN . Archived from the original on 19 April 2012. Retrieved 30 December 2010.Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol. 47 (2): 590–2. doi: 10.1099/00207713-47-2-590 . ISSN   0020-7713. PMID   9103655.
  86. Boone DR; Castenholz RW (18 May 2001) [1984 (Williams & Wilkins)]. Garrity GM (ed.). The Archaea and the Deeply Branching and Phototrophic Bacteria . Bergey's Manual of Systematic Bacteriology. Vol. 1 (2nd ed.). New York: Springer. pp.  721. ISBN   978-0-387-98771-2. British Library no. GBA561951.
  87. Olsen GJ, Woese CR, Overbeek R (1994). "The winds of (evolutionary) change: breathing new life into microbiology". Journal of Bacteriology. 176 (1): 1–6. doi:10.2172/205047. PMC   205007 . PMID   8282683.