Bergamotene

Last updated
Bergamotenes
A-cis-bergamotene.svg
α-cis-bergamotene
A-trans-bergamotene.svg
α-trans-bergamotene
B-cis-bergamotene.svg
β-cis-bergamotene
B-trans-bergamotene.svg
β-trans-bergamotene
Names
IUPAC names
(α): 2,6-Dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1.1]hept-2-ene
(β): 6-Methyl-2-methylidene-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]heptane
Identifiers
  • 17699-05-7 (α)
    13474-59-4 (α-trans)
    23971-87-1 (α-cis)
    6895-56-3 (β)
    15438-94-5 (β-trans)
    15438-93-4 (β-cis)
3D model (JSmol)
PubChem CID
UNII
Properties
C15H24
Molar mass 204.357 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Bergamotenes are a group of isomeric chemical compounds with the molecular formula C15H24. The bergamotenes are found in a variety of plants, particularly in their essential oils.

Contents

There are two structural isomers, α-bergamotene and β-bergamotene, which differ only by the location of a double bond. Both of these isomers have stereoisomers, the most common of which are known as the cis and trans -isomers (or endo- and exo-isomers).

α-Bergamotene is found in the oils of carrot, bergamot, lime, citron, cottonseed, and kumquat. [1] [2]

Pheromones

The bergamotenes are pheromones for some insects. For example, β-trans-bergamotene is a pheromone for the wasp Melittobia digitata . [3] Plants can defend themselves against attack by herbivorous insects by producing pheromones such as bergamotenes that attract predators of those herbivores. [4] [5] In a more complex relationship, the tobacco plant Nicotiana attenuata emits α-trans-bergamotene from its flowers at night to attract the tobacco hawk moth (Manduca sexta) as a pollinator; however, during the day the leaves produce α-trans-bergamotene to lure predatory insects to feed on any larvae and eggs that the pollinator may have produced. [6] [7]

Biosynthesis

All the bergamotenes are biosynthesized from farnesyl pyrophosphate [8] via a variety of enzymes including exo-alpha-bergamotene synthase, (+)-endo-beta-bergamotene synthase, (-)-endo-alpha-bergamotene synthase, and others. Bergamotenes, in turn, are intermediates in the biosynthesis of more complex chemical compounds. For example, β-trans-bergamotene is a precursor in the biosynthesis of fumagillin, ovalicin, and related antibiotics. [8] [9]

Related Research Articles

Terpene Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. Terpenes are further classified by the number of carbons: monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), etc. A well known monoterpene is alpha-pinene, a major component of turpentine.

Juvenile hormones (JHs) are a group of acyclic sesquiterpenoids that regulate many aspects of insect physiology. The first discovery of a JH was by Vincent Wigglesworth. JHs regulate development, reproduction, diapause, and polyphenisms.

Pinene

Pinene (C10H16) is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: α-pinene and β-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants such as camphorweed (Heterotheca) and big sagebrush (Artemisia tridentata). Both isomers are used by many insects in their chemical communication system. The two isomers of pinene constitute the major component of turpentine.

Humulene

Humulene, also known as α-humulene or α-caryophyllene, is a naturally occurring monocyclic sesquiterpene (C15H24), containing an 11-membered ring and consisting of 3 isoprene units containing three nonconjugated C=C double bonds, two of them being triply substituted and one being doubly substituted. It was first found in the essential oils of Humulus lupulus (hops), from which it derives its name. Humulene is an isomer of β-caryophyllene, and the two are often found together as a mixture in many aromatic plants.

The terpinenes are a group of isomeric hydrocarbons that are classified as monoterpenes. They each have the same molecular formula and carbon framework, but they differ in the position of carbon-carbon double bonds. α-Terpinene has been isolated from cardamom and marjoram oils, and from other natural sources. β-Terpinene has no known natural source but has been prepared from sabinene. γ-Terpinene and δ-terpinene have been isolated from a variety of plant sources. They are all colorless liquids with a turpentine-like odor.

Fenchol

Fenchol or 1,3,3-trimethyl-2-norbornanol is a monoterpenoid and an isomer of borneol. It is a colorless or white solid. It occurs widely in nature.

Sesquiterpene

Sesquiterpenes are a class of terpenes that consist of three isoprene units and often have the molecular formula C15H24. Like monoterpenes, sesquiterpenes may be acyclic or contain rings, including many unique combinations. Biochemical modifications such as oxidation or rearrangement produce the related sesquiterpenoids.

Terpineol

Terpineol is any of four isomeric monoterpenoids. Terpenoids are terpene that are modified by the addition of a functional group, in this case, an alcohol. Terpineols have been isolated from a variety of sources such as cardamom, cajuput oil, pine oil, and petitgrain oil. Four isomers exist: α-, β-, γ-terpineol, and terpinen-4-ol. β- and γ-terpineol differ only by the location of the double bond. Terpineol is usually a mixture of these isomers with α-terpineol as the major constituent.

Bornyl diphosphate synthase

In enzymology, bornyl diphosphate synthase (BPPS) is an enzyme that catalyzes the chemical reaction

In enzymology, an aristolochene synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction

Juvabione

Juvabione, historically known as the paper factor, is the methyl ester of todomatuic acid, both of which are sesquiterpenes (C15) found in the wood of true firs of the genus Abies. They occur naturally as part of a mixture of sesquiterpenes based upon the bisabolane scaffold. Sesquiterpenes of this family are known as insect juvenile hormone analogues (IJHA) because of their ability to mimic juvenile activity in order to stifle insect reproduction and growth. These compounds play important roles in conifers as the second line of defense against insect induced trauma and fungal pathogens.

<i>Nicotiana attenuata</i>

Nicotiana attenuata is a species of wild tobacco known by the common name coyote tobacco. It is native to western North America from British Columbia to Texas and northern Mexico, where it grows in many types of habitat. It is a glandular and sparsely hairy annual herb exceeding a meter in maximum height. The leaf blades may be 10 centimetres (4 in) long, the lower ones oval and the upper narrower in shape, and are borne on petioles. The inflorescence bears several flowers with pinkish or greenish white tubular throats 2 to 3 centimetres long, their bases enclosed in pointed sepals. The flower face has five mostly white lobes. The fruit is a capsule about 1 centimetre long.

Bisabolene

Bisabolenes are a group of closely related natural chemical compounds which are classified as sesquiterpenes. Bisabolenes are produced from farnesyl pyrophosphate (FPP) and are present in the essential oils of bisabol, and of a wide variety of other plants including cubeb, lemon, and oregano. Various derivates also function as pheromones in different insects, such as stink bugs and fruit flies. Bisabolenes are produced by several fungi, though their biological role in that group of organisms remains unclear.

Ian T. Baldwin

Ian Thomas Baldwin is an American ecologist.

All-trans-nonaprenyl-diphosphate synthase is an enzyme with systematic name geranyl-diphosphate:isopentenyl-diphosphate transtransferase . This enzyme catalyses the following chemical reaction

Beta-farnesene synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate diphosphate-lyase ( -beta-farnesene-forming). This enzyme catalyses the following chemical reaction

(-)-endo-alpha-bergamotene synthase is an enzyme with systematic name (2Z,6Z)-farnesyl diphosphate lyase . This enzyme catalyses the following chemical reaction

Exo-alpha-bergamotene synthase is an enzyme with systematic name (2E,6E)-farnesyl diphosphate lyase . This enzyme catalyses the following chemical reaction:

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

References

  1. "Metabocard for alpha-Bergamotene (HMDB0036678)". Human Metabolome Database.
  2. Koyasako, A.; Bernhard, R. A. (1983). "Volatile Constituents of the Essential Oil of Kumquat". Journal of Food Science. 48 (6): 1807–1812. doi:10.1111/j.1365-2621.1983.tb05090.x.
  3. "Semiochemical - beta-trans-bergamotene". pherobase.com.
  4. Kessler, A.; Baldwin, I. T. (2001). "Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature". Science. 291 (5511): 2141–2144. Bibcode:2001Sci...291.2141K. doi:10.1126/science.291.5511.2141. PMID   11251117.
  5. Schnee, C.; Kollner, T. G.; Held, M.; Turlings, T. C. J.; Gershenzon, J.; Degenhardt, J. (2006). "The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores". Proceedings of the National Academy of Sciences. 103 (4): 1129–1134. Bibcode:2006PNAS..103.1129S. doi:10.1073/pnas.0508027103. PMC   1347987 . PMID   16418295.
  6. Zhou, Wenwu; Kügler, Anke; McGale, Erica; Haverkamp, Alexander; Knaden, Markus; Guo, Han; Beran, Franziska; Yon, Felipe; Li, Ran; Lackus, Nathalie; Köllner, Tobias G.; Bing, Julia; Schuman, Meredith C.; Hansson, Bill S.; Kessler, Danny; Baldwin, Ian T.; Xu, Shuqing (2017). "Tissue-Specific Emission of (E)-α-Bergamotene Helps Resolve the Dilemma when Pollinators Are Also Herbivores". Current Biology. 27 (9): 1336–1341. doi: 10.1016/j.cub.2017.03.017 . PMID   28434859.
  7. "Bergamotene—alluring and lethal for Manduca sexta". Max-Planck-Gesellschaft. April 24, 2017. Retrieved August 16, 2019.
  8. 1 2 Cane, David E.; McIlwaine, Douglas B.; Harrison, Paul H. M. (1989). "Bergamotene biosynthesis and the enzymic cyclization of farnesyl pyrophosphate". Journal of the American Chemical Society. 111 (3): 1152–1153. doi:10.1021/ja00185a068.
  9. Cane, David E.; McIlwaine, Douglas B. (1987). "The biosynthesis of ovalicin from β-trans-bergamotene". Tetrahedron Letters. 28 (52): 6545–6548. doi:10.1016/S0040-4039(00)96909-0.