Blood-borne disease

Last updated
Bloodborne disease
Clandinjectkit.JPG
A clandestine kit containing materials to inject drugs, a bottle of a type of lean, promethazine, an antiemetic, and unidentified pills. Improper or reckless drug injection is one of the main risks of blood-borne diseases.
Specialty Hematology, Infectious disease

A blood-borne disease is a disease that can be spread through contamination by blood and other body fluids. Blood can contain pathogens of various types, chief among which are microorganisms, like bacteria and parasites, and non-living infectious agents such as viruses. Three blood-borne pathogens in particular, all viruses, are cited as of primary concern to health workers by the CDC-NIOSH: HIV, hepatitis B (HVB), & hepatitis C (HVC). [1]

Contents

Diseases that are not usually transmitted directly by blood contact, but rather by insect or other vector, are more usefully classified as vector-borne disease, even though the causative agent can be found in blood. Vector-borne diseases include West Nile virus, zika fever and malaria.

Many blood-borne diseases can also be contracted by other means, including high-risk sexual behavior or intravenous drug use. These diseases have also been identified in sports medicine. [2]

Since it is difficult to determine what pathogens any given sample of blood contains, and some blood-borne diseases are lethal, standard medical practice regards all blood (and any body fluid) as potentially infectious. "Blood and body fluid precautions" are a type of infection control practice that seeks to minimize this sort of disease transmission.

Occupational exposure

Blood poses the greatest threat to health in a laboratory or clinical setting due to needlestick injuries (e.g., lack of proper needle disposal techniques and/or safety syringes). Needles are not the only issue, as direct splashes of blood also cause transmission. [3] These risks are greatest among healthcare workers, including: nurses, surgeons, laboratory assistants, doctors, phlebotomists, and laboratory technicians. [4] These roles often require the use of syringes for blood draws or to administer medications.[ citation needed ]

The Occupational Safety and Health Administration (OSHA) prescribes 5 rules that are required for a healthcare facility to follow in order to reduce the risk of employee exposure to blood-borne pathogens. They are:[ citation needed ]

These controls, while general, serve to greatly reduce the incidence of blood-borne disease transmission in occupational settings of healthcare workers.

There are 26 different viruses that have been shown to present in healthcare workers as a result of occupational exposure. [5] The most common blood-borne diseases are hepatitis B (HBV), hepatitis C (HCV), and human immunodeficiency virus (HIV). [6] Exposure is possible through blood of an infected patient splashing onto mucous membranes; however, the greatest exposure risk was shown to occur during percutaneous injections performed for vascular access. These include blood draws, as well as catheter placement, as both typically use hollow bore needles. [4] Preventive measures for occupational exposure include standard precautions (hand washing, sharp disposal containers), as well as additional education. Advancements in the design of safety engineered devices have played a significant role in decreasing rates of occupational exposure to blood-borne disease. [6] According to the Massachusetts Sharps Injury Surveillance System, needle devices without safety features accounted for 53% of the 2010 reported sharps injuries. [7] Safer sharps devices now have engineering controls, such as a protective shield over the needle, and sharps containers that have helped to decrease this statistic. These safer alternatives are highly effective in substantially reducing injuries. For instance, almost 83% of injuries from hollow bore needles can be prevented with the use of safer sharps devices. [8] There have been reports of HCW transferring disease to patients. This happens usually when surgeons perform using these sharps as well. [3]

Blood transfusions

Blood for blood transfusion is screened for many blood-borne diseases. Additionally, a technique that uses a combination of riboflavin and UV light to inhibit the replication of these pathogens by altering their nucleic acids can be used to treat blood components prior to their transfusion, and can reduce the risk of disease transmission. [9] [10] [11]

A technology using the synthetic psoralen (amotosalen HCl) and UVA light (320–400 nm) has been implemented in European blood centers for the treatment of platelet and plasma components to prevent transmission of blood-borne diseases caused by bacteria, viruses and protozoa. [12] [13]

Needle exchange programs

Needle exchange programs (NEPs) are an attempt to reduce the spread of blood-borne diseases between intravenous drug users. They often also provide addiction counseling services, infectious disease testing, and in some cases mental health care and other case management. NEPs acquired their name as they were initially places where intravenous (IV) illicit substance users were provided with clean, unused needles in exchange for their used needles. This allows for proper disposal of the needles. [14] Empirical studies confirm the benefits of NEPs. [15] NEPs can affect behaviors that result in the transmission of HIV. These behaviors include decreased sharing of used syringes, which reduces contaminated syringes from circulation and replaces them with sterile ones, among other risk reductions.[ citation needed ]

Prevention

Child receiving vaccine for HPV HPV Vaccine.jpg
Child receiving vaccine for HPV

Follow standard precautions to help prevent the spread of blood-borne pathogens and other diseases whenever there is a risk of exposure to blood or other bodily fluids. Standard precautions include maintaining personal hygiene and using personal protective equipment (PPE), engineering controls, and work practice controls among others. [16] Always avoid contact with blood and other bodily fluids. Wear disposable gloves when providing care, particularly if you may come into contact with blood or bodily fluids. Dispose of gloves properly and change gloves when providing care to a new patient. Use needles with safety devices to help prevent needlestick injury and exposure to blood-borne pathogens.[ citation needed ] It is also recommended healthcare workers who come often in contact with contaminated material should get the HBV vaccine. [3] A hierarchy of controls can help to prevent environmental and occupational exposures and subsequent diseases. These include:[ citation needed ]

Personal protective equipment: Protect workers with PPE such as gloves and masks to avoid transmission of blood and other bodily fluids.

There have been reports of HCW transferring disease to patients. This happens usually when surgeons perform EPPs, which are procedures requiring sharp tools.

See also

Related Research Articles

Body substance isolation is a practice of isolating all body substances of individuals undergoing medical treatment, particularly emergency medical treatment of those who might be infected with illnesses such as HIV, or hepatitis so as to reduce as much as possible the chances of transmitting these illnesses. BSI is similar in nature to universal precautions, but goes further in isolating workers from pathogens, including substances now known to carry HIV.

<span class="mw-page-title-main">Universal precautions</span> Medical standard for contact avoidance

Universal precautions refers to the practice, in medicine, of avoiding contact with patients' bodily fluids, by means of the wearing of nonporous articles such as medical gloves, goggles, and face shields. The infection control techniques were essentially good hygiene habits, such as hand washing and the use of gloves and other barriers, the correct handling of hypodermic needles, scalpels, and aseptic techniques. Following the AIDS outbreak in the 1980s, the US CDC formally introduced them in 1985–88. Every patient was treated as if infected, and therefore precautions were taken to minimize risk.

<span class="mw-page-title-main">Hypodermic needle</span> Device to inject substances into the circulatory system

A hypodermic needle, one of a category of medical tools which enter the skin, called sharps, is a very thin, hollow tube with one sharp tip. It is commonly used with a syringe, a hand-operated device with a plunger, to inject substances into the body or extract fluids from the body. Large-bore hypodermic intervention is especially useful in catastrophic blood loss or treating shock.

Needle sharing is the practice of intravenous drug-users by which a needle or syringe is shared by multiple individuals to administer intravenous drugs such as heroin, steroids, and hormones. This is a primary vector for blood-borne diseases which can be transmitted through blood. People who inject drugs (PWID) are at an increased risk for Hepatitis C (HCV) and HIV due to needle sharing practices. From 1933 to 1943, malaria was spread between users in the New York City area by this method. Afterwards, the use of quinine as a cutting agent in drug mixes became more common. Harm reduction efforts including safe disposal of needles, supervised injection sites, and public education may help bring awareness on safer needle sharing practices.

<span class="mw-page-title-main">Injection (medicine)</span> Method of medication administration

An injection is the act of administering a liquid, especially a drug, into a person's body using a needle and a syringe. An injection is considered a form of parenteral drug administration; it does not involve absorption in the digestive tract. This allows the medication to be absorbed more rapidly and avoid the first pass effect. There are many types of injection, which are generally named after the body tissue the injection is administered into. This includes common injections such as subcutaneous, intramuscular, and intravenous injections, as well as less common injections such as intraperitoneal, intraosseous, intracardiac, intraarticular, and intracavernous injections.

Post-exposure prophylaxis, also known as post-exposure prevention (PEP), is any preventive medical treatment started after exposure to a pathogen in order to prevent the infection from occurring.

<span class="mw-page-title-main">Needlestick injury</span> Accidental puncture of skin causing contamination

A needlestick injury is the penetration of the skin by a hypodermic needle or other sharp object that has been in contact with blood, tissue or other body fluids before the exposure. Even though the acute physiological effects of a needlestick injury are generally negligible, these injuries can lead to transmission of blood-borne diseases, placing those exposed at increased risk of infection from disease-causing pathogens, such as the hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Among healthcare workers and laboratory personnel worldwide, more than 25 blood-borne virus infections have been reported to have been caused by needlestick injuries. In addition to needlestick injuries, transmission of these viruses can also occur as a result of contamination of the mucous membranes, such as those of the eyes, with blood or body fluids, but needlestick injuries make up more than 80% of all percutaneous exposure incidents in the United States. Various other occupations are also at increased risk of needlestick injury, including law enforcement, laborers, tattoo artists, food preparers, and agricultural workers.

Infection prevention and control is the discipline concerned with preventing healthcare-associated infections; a practical rather than academic sub-discipline of epidemiology. In Northern Europe, infection prevention and control is expanded from healthcare into a component in public health, known as "infection protection". It is an essential part of the infrastructure of health care. Infection control and hospital epidemiology are akin to public health practice, practiced within the confines of a particular health-care delivery system rather than directed at society as a whole.

<span class="mw-page-title-main">Needle remover</span> Medical device

A needle remover is a device used to physically remove a needle from a syringe. In developing countries, there is still a need for improvements in needle safety in hospital settings as most of the needle removal processes are done manually and under severe risk of hazard from needles puncturing skin risking infection. These countries cannot afford needles with individual safety devices attached, so needle-removers must be used to remove the needle from the syringe. This lowers possible pathogen spread by preventing the reuse of the syringes, reducing incidents of accidental needle-sticks, and facilitating syringe disposal.

<span class="mw-page-title-main">Sharps waste</span> Form of biomedical waste

Sharps waste is a form of biomedical waste composed of used "sharps", which includes any device or object used to puncture or lacerate the skin. Sharps waste is classified as biohazardous waste and must be carefully handled. Common medical materials treated as sharps waste are hypodermic needles, disposable scalpels and blades, contaminated glass and certain plastics, and guidewires used in surgery.

<span class="mw-page-title-main">Occupational hazard</span> Hazard experienced in the workplace

An occupational hazard is a hazard experienced in the workplace. This encompasses many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU, a similar role is taken by EU-OSHA.

<span class="mw-page-title-main">Drug injection</span> Method of introducing a drug

Drug injection is a method of introducing a drug into the bloodstream via a hollow hypodermic needle, which is pierced through the skin into the body. Intravenous therapy, a form of drug injection, is universally practiced in modernized medical care. As of 2004, there were 13.2 million people worldwide who self-administered injection drugs outside of medical supervision, of which 22% are from developed countries.

<span class="mw-page-title-main">Winged infusion set</span> Specialized venipuncture needle

A winged infusion set—also known as "butterfly" or "scalp vein" set—is a device specialized for venipuncture: i.e. for accessing a superficial vein or artery for either intravenous injection or phlebotomy. It consists, from front to rear, of a hypodermic needle, two bilateral flexible "wings", flexible small-bore transparent tubing, and lastly a connector. This connector attaches to another device: e.g. syringe, vacuum tube holder/hub, or extension tubing from an infusion pump or gravity-fed infusion/transfusion bag/bottle.

A transfusion transmitted infection (TTI) is a virus, parasite, or other potential pathogen that can be transmitted in donated blood through a transfusion to a recipient. The term is usually limited to known pathogens, but also sometimes includes agents such as Simian foamy virus which are not known to cause disease.

HONOReform – is a patient advocacy organization that seeks to promote adherence to injection safety guidelines and increase governmental oversight of outpatient medical facilities. In addition to promoting lessons learned from outbreaks of hepatitis C, the organization advocates for a more compassionate response to large scale medical disasters.

<span class="mw-page-title-main">Safety syringe</span>

A safety syringe is a syringe with a built-in safety mechanism to reduce the risk of needlestick injuries to healthcare workers and others. The needle on a safety syringe can be detachable or permanently attached. On some models, a sheath is placed over the needle, whereas in others the needle retracts into the barrel. Safety needles serve the same functions as safety syringes, but the protective mechanism is a part of the needle rather than the syringe. Legislation requiring safety syringes or equivalents has been introduced in many nations since needlestick injuries and re-use prevention became the focus of governments and safety bodies.

Occupational hazards in dentistry are occupational hazards that are specifically associated with a dental care environment. Members of the dental team, including dentists, hygienists, dental nurses and radiographers, must ensure local protocols are followed to minimize risk.

In medicine, a needleless connector connects to the end of vascular catheters and enable catheter access for infusion and aspiration. Needleless connectors were developed to reduce needlestick injuries, which occurs when the skin is accidentally punctured by a used needle. Needlestick injuries can be very serious and potentially expose a healthcare professional to bloodborne infectious diseases such as HIV/AIDS, Hepatitis B and Hepatitis C.

Margaret Frances "Peggy" Ferro was an American healthcare activist and nurse's aide. Her efforts led to laws requiring the use safety syringes in hospitals and other medical settings.

An occupational infectious disease is an infectious disease that is contracted at the workplace. Biological hazards (biohazards) include infectious microorganisms such as viruses, bacteria and toxins produced by those organisms such as anthrax.

References

  1. "Bloodborne Infectious Diseases: HIV/AIDS, Hepatitis B, Hepatitis C". Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Retrieved 30 March 2020.
  2. Jason J. Pirozzolo; Donald C. LeMay (July 2007). "Blood-Borne Infections". Clinics.com. p. Volume 26, Issue 3, 425–431. Retrieved February 23, 2014.
  3. 1 2 3 Deuffic-Burban, S.; Delarocque-Astagneau, E.; Abiteboul, D.; Bouvet, E.; Yazdanpanah, Y. (2011-09-01). "Blood-borne viruses in health care workers: Prevention and management". Journal of Clinical Virology. 52 (1): 4–10. doi:10.1016/j.jcv.2011.05.016. ISSN   1386-6532.
  4. 1 2 S. Deuffic-Burbana, E. Delarocque-Astagneauc, D. Abitebould, E. Bouvetd, Y. Yazdanpanah Blood-borne viruses in healthcare workers: Prevention and management. Journal of Clinical Virology 52(2011) 4–10
  5. Massachusetts Department of Public Health Occupational Health Surveillance Program. (2010) Sharps Injuries among Hospital Workers in Massachusetts, 2010: Findings from the Massachusetts Sharps Injury Surveillance System.
  6. 1 2 Annette Prüss-Üstün, Elisabetta Rapiti, and Yvan Hutin Estimation of the Global Burden of Disease Attributable to Contaminated Sharps Injuries Among Health-Care Workers. American Journal of Industrial Medicine 48:482–490 (2005)
  7. Patrick, Deval (March 2012). Governor (PDF). Boston, MA: Massachusetts Department of Public Health. pp. 1–24.
  8. Centers for Disease Control and Prevention. "Stop Sticks Campaign". The National Institute for Occupational Safety and Health. Retrieved October 18, 2017.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. Goodrich RP, et al., "Arkk Laboratory Comparison of Pathogen Reduction Technology Treatment and Culture of Platelet Products for Addressing Bacterial Contamination Concerns." Transfusion 2009;49 : 1205–1216.
  10. Ruane PH, et al., "Photochemical Inactivation of Selected Viruses and Bacteria in Platelet Concentrates Using Riboflavin and Light." Transfusion 2004; 44: 877–885.
  11. Goodrich RP, et al. "The Mirasol PRT System for Pathogen Reduction of Platelets and Plasma: An Overview of Current Status and Future Trends." Transfusion and Apheresis Science 2006; 35 (1): 5–17.
  12. Osselaer et al. "Universal adoption of pathogen inactivation of platelet components: impact on platelet and red blood cell component use". Transfusion 2009; 49:1412–1422.
  13. Cazenave et al. "An active hemovigilance program characterizing the safety profile of 7,483 transfusions with plasma components prepared with amotosalen and UVA photochemical treatment". Transfusion 2010;50:1210–1219.
  14. "Needle Exchange: A Primer". PBS. Retrieved October 18, 2017.
  15. Lurie, Peter (1993). The Public Health Impact of Needle Exchange Programs in the United States and Abroad (PDF). San Francisco, CA: UC Berkeley School of Public Health.
  16. Fact Sheet. "Preventing the Spread of Bloodborne Pathogens" (PDF). Bloodborne Pathogens Training. The American National Red Cross. Archived from the original (PDF) on 2021-05-01. Retrieved 2017-10-25.