Borel measure

Last updated

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). [1] Some authors require additional restrictions on the measure, as described below.

Contents

Formal definition

Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets. [2] A few authors require in addition that is locally finite, meaning that for every compact set . If a Borel measure is both inner regular and outer regular, it is called a regular Borel measure. If is both inner regular, outer regular, and locally finite, it is called a Radon measure.

On the real line

The real line with its usual topology is a locally compact Hausdorff space; hence we can define a Borel measure on it. In this case, is the smallest σ-algebra that contains the open intervals of . While there are many Borel measures μ, the choice of Borel measure that assigns for every half-open interval is sometimes called "the" Borel measure on . This measure turns out to be the restriction to the Borel σ-algebra of the Lebesgue measure , which is a complete measure and is defined on the Lebesgue σ-algebra. The Lebesgue σ-algebra is actually the completion of the Borel σ-algebra, which means that it is the smallest σ-algebra that contains all the Borel sets and can be equipped with a complete measure. Also, the Borel measure and the Lebesgue measure coincide on the Borel sets (i.e., for every Borel measurable set, where is the Borel measure described above). This idea extends to finite-dimensional spaces (the Cramér–Wold theorem, below) but does not hold, in general, for infinite-dimensional spaces. Infinite-dimensional Lebesgue measures do not exist.

Product spaces

If X and Y are second-countable, Hausdorff topological spaces, then the set of Borel subsets of their product coincides with the product of the sets of Borel subsets of X and Y. [3] That is, the Borel functor

from the category of second-countable Hausdorff spaces to the category of measurable spaces preserves finite products.

Applications

Lebesgue–Stieltjes integral

The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind. [4]

Laplace transform

One can define the Laplace transform of a finite Borel measure μ on the real line by the Lebesgue integral [5]

An important special case is where μ is a probability measure or, even more specifically, the Dirac delta function. In operational calculus, the Laplace transform of a measure is often treated as though the measure came from a distribution function f. In that case, to avoid potential confusion, one often writes

where the lower limit of 0 is shorthand notation for

This limit emphasizes that any point mass located at 0 is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the Laplace–Stieltjes transform.

Moment problem

One can define the moments of a finite Borel measure μ on the real line by the integral

For these correspond to the Hamburger moment problem, the Stieltjes moment problem and the Hausdorff moment problem, respectively. The question or problem to be solved is, given a collection of such moments, is there a corresponding measure? For the Hausdorff moment problem, the corresponding measure is unique. For the other variants, in general, there are an infinite number of distinct measures that give the same moments.

Hausdorff dimension and Frostman's lemma

Given a Borel measure μ on a metric space X such that μ(X) > 0 and μ(B(x, r)) ≤ rs holds for some constant s > 0 and for every ball B(x, r) in X, then the Hausdorff dimension dimHaus(X) ≥ s. A partial converse is provided by the Frostman lemma: [6]

Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent:

holds for all x  Rn and r > 0.

Cramér–Wold theorem

The Cramér–Wold theorem in measure theory states that a Borel probability measure on is uniquely determined by the totality of its one-dimensional projections. [7] It is used as a method for proving joint convergence results. The theorem is named after Harald Cramér and Herman Ole Andreas Wold.

See also

Related Research Articles

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (X, Σ, μ) is complete if and only if

In measure-theoretic analysis and related branches of mathematics, Lebesgue–Stieltjes integration generalizes both Riemann–Stieltjes and Lebesgue integration, preserving the many advantages of the former in a more general measure-theoretic framework. The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞). A set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables with variance 1, then X has variance and its law is approximately Gaussian.

The concept of an abstract Wiener space is a mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.

In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that is zero "only on points".

In functional analysis and measure theory, one may seek to extend the Lebesgue measure on to an analogous measure on an infinite dimensional separable Banach space. Without departing substantially from the essential properties of the Lebesgue measure, this is impossible. Indeed, any translation invariant Borel measure on an infinite dimensional separable Banach space is either infinite on all open sets, or the zero measure.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, the Riesz–Markov–Kakutani representation theorem relates linear functionals on spaces of continuous functions on a locally compact space to measures in measure theory. The theorem is named for Frigyes Riesz (1909) who introduced it for continuous functions on the unit interval, Andrey Markov (1938) who extended the result to some non-compact spaces, and Shizuo Kakutani (1941) who extended the result to compact Hausdorff spaces.

In mathematics, in particular in measure theory, there are different notions of distribution function and it is important to understand the context in which they are used.

References

  1. D. H. Fremlin, 2000. Measure Theory Archived 2010-11-01 at the Wayback Machine . Torres Fremlin.
  2. Alan J. Weir (1974). General integration and measure. Cambridge University Press. pp. 158–184. ISBN   0-521-29715-X.
  3. Vladimir I. Bogachev. Measure Theory, Volume 1. Springer Science & Business Media, Jan 15, 2007
  4. Halmos, Paul R. (1974), Measure Theory , Berlin, New York: Springer-Verlag, ISBN   978-0-387-90088-9
  5. Feller 1971 , §XIII.1
  6. Rogers, C. A. (1998). Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. pp. xxx+195. ISBN   0-521-62491-6.
  7. K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.

Further reading