Lebesgue differentiation theorem

Last updated

In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis, which states that for almost every point, the value of an integrable function is the limiting average taken around the point. The theorem is named for Henri Lebesgue.

Contents

Statement

For a Lebesgue integrable real or complex-valued function f on Rn, the indefinite integral is a set function which maps a measurable set A to the Lebesgue integral of , where denotes the characteristic function of the set A. It is usually written

with λ the ndimensional Lebesgue measure.

The derivative of this integral at x is defined to be

where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B centered at x, and B x means that the diameter of B tends to 0.
The Lebesgue differentiation theorem( Lebesgue 1910 ) states that this derivative exists and is equal to f(x) at almost every point x Rn. [1] In fact a slightly stronger statement is true. Note that:

The stronger assertion is that the right hand side tends to zero for almost every point x. The points x for which this is true are called the Lebesgue points of f.

A more general version also holds. One may replace the balls B by a family of sets U of bounded eccentricity. This means that there exists some fixed c > 0 such that each set U from the family is contained in a ball B with . It is also assumed that every point xRn is contained in arbitrarily small sets from . When these sets shrink to x, the same result holds: for almost every point x,

The family of cubes is an example of such a family , as is the family (m) of rectangles in R2 such that the ratio of sides stays between m−1 and m, for some fixed m  1. If an arbitrary norm is given on Rn, the family of balls for the metric associated to the norm is another example.

The one-dimensional case was proved earlier by Lebesgue (1904). If f is integrable on the real line, the function

is almost everywhere differentiable, with Were defined by a Riemann integral this would be essentially the fundamental theorem of calculus, but Lebesgue proved that it remains true when using the Lebesgue integral. [2]

Proof

The theorem in its stronger form—that almost every point is a Lebesgue point of a locally integrable function f—can be proved as a consequence of the weakL1 estimates for the Hardy–Littlewood maximal function. The proof below follows the standard treatment that can be found in Benedetto & Czaja (2009), Stein & Shakarchi (2005), Wheeden & Zygmund (1977) and Rudin (1987).

Since the statement is local in character, f can be assumed to be zero outside some ball of finite radius and hence integrable. It is then sufficient to prove that the set

has measure 0 for all α > 0.

Let ε > 0 be given. Using the density of continuous functions of compact support in L1(Rn), one can find such a function g satisfying

It is then helpful to rewrite the main difference as

The first term can be bounded by the value at x of the maximal function for f  g, denoted here by :

The second term disappears in the limit since g is a continuous function, and the third term is bounded by |f(x) g(x)|. For the absolute value of the original difference to be greater than 2α in the limit, at least one of the first or third terms must be greater than α in absolute value. However, the estimate on the Hardy–Littlewood function says that

for some constant An depending only upon the dimension n. The Markov inequality (also called Tchebyshev's inequality) says that

whence

Since ε was arbitrary, it can be taken to be arbitrarily small, and the theorem follows.

Discussion of proof

The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving the estimate for the Hardy–Littlewood maximal function.

The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity. This follows since the same substitution can be made in the statement of the Vitali covering lemma.

Discussion

This is an analogue, and a generalization, of the fundamental theorem of calculus, which equates a Riemann integrable function and the derivative of its (indefinite) integral. It is also possible to show a converse – that every differentiable function is equal to the integral of its derivative, but this requires a Henstock–Kurzweil integral in order to be able to integrate an arbitrary derivative.

A special case of the Lebesgue differentiation theorem is the Lebesgue density theorem, which is equivalent to the differentiation theorem for characteristic functions of measurable sets. The density theorem is usually proved using a simpler method (e.g. see Measure and Category).

This theorem is also true for every finite Borel measure on Rn instead of Lebesgue measure (a proof can be found in e.g. ( Ledrappier & Young 1985 )). More generally, it is true of any finite Borel measure on a separable metric space such that at least one of the following holds:

A proof of these results can be found in sections 2.8–2.9 of (Federer 1969).

See also

Related Research Articles

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematical analysis, Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value.

In mathematics, the Rayleigh quotient for a given complex Hermitian matrix and nonzero vector is defined as:

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, the Cauchy principal value, named after Augustin Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the singularity.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, S. Watanabe, I. Shigekawa, and so on finally completed the foundations.

In mathematics, Grönwall's inequality allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form. For the latter there are several variants.

In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler.

In probability and statistics, the Hellinger distance is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space X with a measure μ and a metric d, one asks for what functions f : X → R does

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematical analysis, the final value theorem (FVT) is one of several similar theorems used to relate frequency domain expressions to the time domain behavior as time approaches infinity. Mathematically, if in continuous time has (unilateral) Laplace transform , then a final value theorem establishes conditions under which

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Khabibullin's conjecture is a conjecture in mathematics related to Paley's problem for plurisubharmonic functions and to various extremal problems in the theory of entire functions of several variables. The conjecture was named after its proposer, B. N. Khabibullin.

In mathematics, the Morrey–Campanato spaces are Banach spaces which extend the notion of functions of bounded mean oscillation, describing situations where the oscillation of the function in a ball is proportional to some power of the radius other than the dimension. They are used in the theory of elliptic partial differential equations, since for certain values of , elements of the space are Hölder continuous functions over the domain .

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

References

  1. Folland, G. B. (1999). Real analysis : modern techniques and their applications (2 ed.). New York: Wiley. pp. Chapter 3. ISBN   0-471-31716-0. OCLC   39849337.
  2. McDonald, John N. (2013). A course in real analysis. N. A. Weiss (2 ed.). Boston, Mass.: Academic Press/Elsevier. ISBN   978-0-12-387774-1. OCLC   754105634.