Infinite-dimensional Lebesgue measure

Last updated

An infinite-dimensional Lebesgue measure (or Lebesgue-like measure) is a measure defined on an infinite-dimensional Banach space, which shares certain properties with the Lebesgue measure defined on finite-dimensional spaces.

Contents

The usual Lebesgue measure does not generalize to all infinite-dimensional spaces, because any translation-invariant Borel measure on an infinite-dimensional separable Banach space is either infinite on all sets or zero on all sets. However, there are examples of Lebesgue-like measures when either the space is not separable (such as the Hilbert cube), or when one of the characteristic properties of the Lebesgue measure is relaxed.

Motivation

The Lebesgue measure on the Euclidean space is locally finite, strictly positive, and translation-invariant. That is:

Motivated by their geometrical significance, constructing measures satisfying the above set properties for infinite-dimensional spaces such as the spaces or path spaces is still an open and active area of research.

Non-Existence Theorem in Separable Banach spaces

Let be an infinite-dimensional, separable Banach space. Then, the only locally finite and translation invariant Borel measure on is the trivial measure. Equivalently, there is no locally finite, strictly positive, and translation invariant measure on . [1]

Proof

Let be an infinite-dimensional, separable Banach space equipped with a locally finite translation-invariant measurement To prove that is the trivial measure, it is sufficient and necessary to show that

Like every separable metric space, is a Lindelöf space, which means that every open cover of has a countable subcover. It is, therefore, enough to show that there exists some open cover of by null sets because by choosing a countable subcover, the σ-subadditivity of implies that

Using local finiteness, suppose that for some the open ball of radius has a finite -measure. Since is infinite-dimensional, by Riesz's lemma there is an infinite sequence of pairwise disjoint open balls , of radius with all the smaller balls contained within By translation invariance, all the smaller balls have the same measure, and since the sum of these measurements is finite, the smaller balls must all have -measure zero.

Since was arbitrary, every open ball in has zero measure, and taking a cover of which is the set of all open balls completes the proof.

Nontrivial measures

The following are examples where a notion of an infinite-dimensional Lebesgue measure exists, once the conditions of the above theorem are loosened.

There are other kinds of measures that support entirely separable Banach spaces such as the abstract Wiener space construction, which gives the analog of products of Gaussian measures. Alternatively, one may consider a Lebesgue measurement of finite-dimensional subspaces on the larger space and consider the so-called prevalent and shy sets. [2]

The Hilbert cube carries the product Lebesgue measure [3] and the compact topological group given by the Tychonoff product of an infinite number of copies of the circle group which is infinite-dimensional and carries a Haar measure that is translation-invariant. These two spaces can be mapped onto each other in a measure-preserving way by unwrapping the circles into intervals. The infinite product of the additive real numbers has the analogous product Haar measure, which is precisely the infinite-dimensional analog of the Lebesgue measure.[ citation needed ]

See also

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

In mathematics and functional analysis, a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In the mathematical discipline of measure theory, a Banach measure is a certain way to assign a size to all subsets of the Euclidean plane, consistent with but extending the commonly used Lebesgue measure. While there are certain subsets of the plane which are not Lebesgue measurable, all subsets of the plane have a Banach measure. On the other hand, the Lebesgue measure is countably additive while a Banach measure is only finitely additive.

In mathematics, a quasi-invariant measureμ with respect to a transformation T, from a measure space X to itself, is a measure which, roughly speaking, is multiplied by a numerical function of T. An important class of examples occurs when X is a smooth manifold M, T is a diffeomorphism of M, and μ is any measure that locally is a measure with base the Lebesgue measure on Euclidean space. Then the effect of T on μ is locally expressible as multiplication by the Jacobian determinant of the derivative (pushforward) of T.

In mathematics, cylinder set measure is a kind of prototype for a measure on an infinite-dimensional vector space. An example is the Gaussian cylinder set measure on Hilbert space.

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space , closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable is obtained by summing a large number of independent random variables with variance 1, then has variance and its law is approximately Gaussian.

The concept of an abstract Wiener space is a mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.

In measure theory, a pushforward measure is obtained by transferring a measure from one measurable space to another using a measurable function.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

In mathematics, the notions of prevalence and shyness are notions of "almost everywhere" and "measure zero" that are well-suited to the study of infinite-dimensional spaces and make use of the translation-invariant Lebesgue measure on finite-dimensional real spaces. The term "shy" was suggested by the American mathematician John Milnor.

In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space X with a measure μ and a metric d, one asks for what functions f : X → R does

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics — specifically, in the fields of probability theory and inverse problems — Besov measures and associated Besov-distributed random variables are generalisations of the notions of Gaussian measures and random variables, Laplace distributions, and other classical distributions. They are particularly useful in the study of inverse problems on function spaces for which a Gaussian Bayesian prior is an inappropriate model. The construction of a Besov measure is similar to the construction of a Besov space, hence the nomenclature.

References

  1. Oxtoby, John C. (1946). "Invariant measures in groups which are not locally compact". Trans. Amer. Math. Soc. 60: 216. doi:10.1090/S0002-9947-1946-0018188-5.
  2. Hunt, Brian R. and Sauer, Tim and Yorke, James A. (1992). "Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces". Bull. Amer. Math. Soc. (N.S.). 27 (2): 217–238. arXiv: math/9210220 . Bibcode:1992math.....10220H. doi:10.1090/S0273-0979-1992-00328-2. S2CID   17534021.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Oxtoby, John C.; Prasad, Vidhu S. (1978). "Homeomorphic Measures on the Hilbert Cube". Pacific J. Math. 77 (2): 483–497. doi:10.2140/pjm.1978.77.483.