Barrelled space

Last updated

In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki  ( 1950 ).

Contents

Barrels

A convex and balanced subset of a real or complex vector space is called a disk and it is said to be disked, absolutely convex , or convex balanced.

A barrel or a barrelled set in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset.

Every barrel must contain the origin. If and if is any subset of then is a convex, balanced, and absorbing set of if and only if this is all true of in for every -dimensional vector subspace thus if then the requirement that a barrel be a closed subset of is the only defining property that does not depend solely on (or lower)-dimensional vector subspaces of

If is any TVS then every closed convex and balanced neighborhood of the origin is necessarily a barrel in (because every neighborhood of the origin is necessarily an absorbing subset). In fact, every locally convex topological vector space has a neighborhood basis at its origin consisting entirely of barrels. However, in general, there might exist barrels that are not neighborhoods of the origin; "barrelled spaces" are exactly those TVSs in which every barrel is necessarily a neighborhood of the origin. Every finite dimensional topological vector space is a barrelled space so examples of barrels that are not neighborhoods of the origin can only be found in infinite dimensional spaces.

Examples of barrels and non-barrels

The closure of any convex, balanced, and absorbing subset is a barrel. This is because the closure of any convex (respectively, any balanced, any absorbing) subset has this same property.

A family of examples: Suppose that is equal to (if considered as a complex vector space) or equal to (if considered as a real vector space). Regardless of whether is a real or complex vector space, every barrel in is necessarily a neighborhood of the origin (so is an example of a barrelled space). Let be any function and for every angle let denote the closed line segment from the origin to the point Let Then is always an absorbing subset of (a real vector space) but it is an absorbing subset of (a complex vector space) if and only if it is a neighborhood of the origin. Moreover, is a balanced subset of if and only if for every (if this is the case then and are completely determined by 's values on ) but is a balanced subset of if and only it is an open or closed ball centered at the origin (of radius ). In particular, barrels in are exactly those closed balls centered at the origin with radius in If then is a closed subset that is absorbing in but not absorbing in and that is neither convex, balanced, nor a neighborhood of the origin in By an appropriate choice of the function it is also possible to have be a balanced and absorbing subset of that is neither closed nor convex. To have be a balanced, absorbing, and closed subset of that is neither convex nor a neighborhood of the origin, define on as follows: for let (alternatively, it can be any positive function on that is continuously differentiable, which guarantees that and that is closed, and that also satisfies which prevents from being a neighborhood of the origin) and then extend to by defining which guarantees that is balanced in

Properties of barrels

Characterizations of barreled spaces

Denote by the space of continuous linear maps from into

If is a Hausdorff topological vector space (TVS) with continuous dual space then the following are equivalent:

  1. is barrelled.
  2. Definition: Every barrel in is a neighborhood of the origin.
    • This definition is similar to a characterization of Baire TVSs proved by Saxon [1974], who proved that a TVS with a topology that is not the indiscrete topology is a Baire space if and only if every absorbing balanced subset is a neighborhood of some point of (not necessarily the origin). [2]
  3. For any Hausdorff TVS every pointwise bounded subset of is equicontinuous. [3]
  4. For any F-space every pointwise bounded subset of is equicontinuous. [3]
  5. Every closed linear operator from into a complete metrizable TVS is continuous. [4]
    • A linear map is called closed if its graph is a closed subset of
  6. Every Hausdorff TVS topology on that has a neighborhood basis of the origin consisting of -closed set is course than [5]

If is locally convex space then this list may be extended by appending:

  1. There exists a TVS not carrying the indiscrete topology (so in particular, ) such that every pointwise bounded subset of is equicontinuous. [2]
  2. For any locally convex TVS every pointwise bounded subset of is equicontinuous. [2]
    • It follows from the above two characterizations that in the class of locally convex TVS, barrelled spaces are exactly those for which the uniform boundedness principal holds.
  3. Every -bounded subset of the continuous dual space is equicontinuous (this provides a partial converse to the Banach-Steinhaus theorem). [2] [6]
  4. carries the strong dual topology [2]
  5. Every lower semicontinuous seminorm on is continuous. [2]
  6. Every linear map into a locally convex space is almost continuous. [2]
    • A linear map is called almost continuous if for every neighborhood of the origin in the closure of is a neighborhood of the origin in
  7. Every surjective linear map from a locally convex space is almost open. [2]
    • This means that for every neighborhood of 0 in the closure of is a neighborhood of 0 in
  8. If is a locally convex topology on such that has a neighborhood basis at the origin consisting of -closed sets, then is weaker than [2]

If is a Hausdorff locally convex space then this list may be extended by appending:

  1. Closed graph theorem : Every closed linear operator into a Banach space is continuous. [7]
  2. For every subset of the continuous dual space of the following properties are equivalent: is [6]
    1. equicontinuous;
    2. relatively weakly compact;
    3. strongly bounded;
    4. weakly bounded.
  3. The 0-neighborhood bases in and the fundamental families of bounded sets in correspond to each other by polarity. [6]

If is metrizable topological vector space then this list may be extended by appending:

  1. For any complete metrizable TVS every pointwise bounded sequence in is equicontinuous. [3]

If is a locally convex metrizable topological vector space then this list may be extended by appending:

  1. (Property S): The weak* topology on is sequentially complete. [8]
  2. (Property C): Every weak* bounded subset of is -relatively countably compact. [8]
  3. (𝜎-barrelled): Every countable weak* bounded subset of is equicontinuous. [8]
  4. (Baire-like): is not the union of an increase sequence of nowhere dense disks. [8]

Examples and sufficient conditions

Each of the following topological vector spaces is barreled:

  1. TVSs that are Baire space.
    • Consequently, every topological vector space that is of the second category in itself is barrelled.
  2. F-spaces, Fréchet spaces, Banach spaces, and Hilbert spaces.
    • However, there exist normed vector spaces that are not barrelled. For example, if the -space is topologized as a subspace of then it is not barrelled.
  3. Complete pseudometrizable TVSs. [9]
    • Consequently, every finite-dimensional TVS is barrelled.
  4. Montel spaces.
  5. Strong dual spaces of Montel spaces (since they are necessarily Montel spaces).
  6. A locally convex quasi-barrelled space that is also a σ-barrelled space. [10]
  7. A sequentially complete quasibarrelled space.
  8. A quasi-complete Hausdorff locally convex infrabarrelled space. [2]
    • A TVS is called quasi-complete if every closed and bounded subset is complete.
  9. A TVS with a dense barrelled vector subspace. [2]
    • Thus the completion of a barreled space is barrelled.
  10. A Hausdorff locally convex TVS with a dense infrabarrelled vector subspace. [2]
    • Thus the completion of an infrabarrelled Hausdorff locally convex space is barrelled. [2]
  11. A vector subspace of a barrelled space that has countable codimensional. [2]
    • In particular, a finite codimensional vector subspace of a barrelled space is barreled.
  12. A locally convex ultrabarelled TVS. [11]
  13. A Hausdorff locally convex TVS such that every weakly bounded subset of its continuous dual space is equicontinuous. [12]
  14. A locally convex TVS such that for every Banach space a closed linear map of into is necessarily continuous. [13]
  15. A product of a family of barreled spaces. [14]
  16. A locally convex direct sum and the inductive limit of a family of barrelled spaces. [15]
  17. A quotient of a barrelled space. [16] [15]
  18. A Hausdorff sequentially complete quasibarrelled boundedly summing TVS. [17]
  19. A locally convex Hausdorff reflexive space is barrelled.

Counter examples

Properties of barreled spaces

Banach–Steinhaus generalization

The importance of barrelled spaces is due mainly to the following results.

Theorem [19]   Let be a barrelled TVS and be a locally convex TVS. Let be a subset of the space of continuous linear maps from into . The following are equivalent:

  1. is bounded for the topology of pointwise convergence;
  2. is bounded for the topology of bounded convergence;
  3. is equicontinuous.

The Banach-Steinhaus theorem is a corollary of the above result. [20] When the vector space consists of the complex numbers then the following generalization also holds.

Theorem [21]   If is a barrelled TVS over the complex numbers and is a subset of the continuous dual space of , then the following are equivalent:

  1. is weakly bounded;
  2. is strongly bounded;
  3. is equicontinuous;
  4. is relatively compact in the weak dual topology.

Recall that a linear map is called closed if its graph is a closed subset of

Closed Graph Theorem [22]   Every closed linear operator from a Hausdorff barrelled TVS into a complete metrizable TVS is continuous.

Other properties

See also

Related Research Articles

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.

In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying

In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .

In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.

In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by that property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

A locally convex topological vector space (TVS) is B-complete or a Ptak space if every subspace is closed in the weak-* topology on whenever is closed in for each equicontinuous subset .

In the field of functional analysis, DF-spaces, also written (DF)-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products.

In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.

In functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of .

In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References

    Bibliography