Seminorm

Last updated

In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.

Contents

A topological vector space is locally convex if and only if its topology is induced by a family of seminorms.

Definition

Let be a vector space over either the real numbers or the complex numbers A real-valued function is called a seminorm if it satisfies the following two conditions:

  1. Subadditivity [1] /Triangle inequality: for all
  2. Absolute homogeneity: [1] for all and all scalars

These two conditions imply that [proof 1] and that every seminorm also has the following property: [proof 2]

  1. Nonnegativity: [1] for all

Some authors include non-negativity as part of the definition of "seminorm" (and also sometimes of "norm"), although this is not necessary since it follows from the other two properties.

By definition, a norm on is a seminorm that also separates points, meaning that it has the following additional property:

  1. Positive definite/Positive [1] /Point-separating: whenever satisfies then

A seminormed space is a pair consisting of a vector space and a seminorm on If the seminorm is also a norm then the seminormed space is called a normed space .

Since absolute homogeneity implies positive homogeneity, every seminorm is a type of function called a sublinear function. A map is called a sublinear function if it is subadditive and positive homogeneous. Unlike a seminorm, a sublinear function is not necessarily nonnegative. Sublinear functions are often encountered in the context of the Hahn–Banach theorem. A real-valued function is a seminorm if and only if it is a sublinear and balanced function.

Examples

Minkowski functionals and seminorms

Seminorms on a vector space are intimately tied, via Minkowski functionals, to subsets of that are convex, balanced, and absorbing. Given such a subset of the Minkowski functional of is a seminorm. Conversely, given a seminorm on the sets and are convex, balanced, and absorbing and furthermore, the Minkowski functional of these two sets (as well as of any set lying "in between them") is [5]

Algebraic properties

Every seminorm is a sublinear function, and thus satisfies all properties of a sublinear function, including convexity, and for all vectors : the reverse triangle inequality: [2] [6]

and also and [2] [6]

For any vector and positive real [7]

and furthermore, is an absorbing disk in [3]

If is a sublinear function on a real vector space then there exists a linear functional on such that [6] and furthermore, for any linear functional on on if and only if [6]

Other properties of seminorms

Every seminorm is a balanced function. A seminorm is a norm on if and only if does not contain a non-trivial vector subspace.

If is a seminorm on then is a vector subspace of and for every is constant on the set and equal to [proof 3]

Furthermore, for any real [3]

If is a set satisfying then is absorbing in and where denotes the Minkowski functional associated with (that is, the gauge of ). [5] In particular, if is as above and is any seminorm on then if and only if [5]

If is a normed space and then for all in the interval [8]

Every norm is a convex function and consequently, finding a global maximum of a norm-based objective function is sometimes tractable.

Relationship to other norm-like concepts

Let be a non-negative function. The following are equivalent:

  1. is a seminorm.
  2. is a convex -seminorm.
  3. is a convex balanced G-seminorm. [9]

If any of the above conditions hold, then the following are equivalent:

  1. is a norm;
  2. does not contain a non-trivial vector subspace. [10]
  3. There exists a norm on with respect to which, is bounded.

If is a sublinear function on a real vector space then the following are equivalent: [6]

  1. is a linear functional;
  2. ;
  3. ;

Inequalities involving seminorms

If are seminorms on then:

If is a seminorm on and is a linear functional on then:

Hahn–Banach theorem for seminorms

Seminorms offer a particularly clean formulation of the Hahn–Banach theorem:

If is a vector subspace of a seminormed space and if is a continuous linear functional on then may be extended to a continuous linear functional on that has the same norm as [15]

A similar extension property also holds for seminorms:

Theorem [16] [12]  (Extending seminorms)  If is a vector subspace of is a seminorm on and is a seminorm on such that then there exists a seminorm on such that and

Proof: Let be the convex hull of Then is an absorbing disk in and so the Minkowski functional of is a seminorm on This seminorm satisfies on and on

Topologies of seminormed spaces

Pseudometrics and the induced topology

A seminorm on induces a topology, called the seminorm-induced topology, via the canonical translation-invariant pseudometric ; This topology is Hausdorff if and only if is a metric, which occurs if and only if is a norm. [4] This topology makes into a locally convex pseudometrizable topological vector space that has a bounded neighborhood of the origin and a neighborhood basis at the origin consisting of the following open balls (or the closed balls) centered at the origin:

as ranges over the positive reals. Every seminormed space should be assumed to be endowed with this topology unless indicated otherwise. A topological vector space whose topology is induced by some seminorm is called seminormable.

Equivalently, every vector space with seminorm induces a vector space quotient where is the subspace of consisting of all vectors with Then carries a norm defined by The resulting topology, pulled back to is precisely the topology induced by

Any seminorm-induced topology makes locally convex, as follows. If is a seminorm on and call the set the open ball of radius about the origin; likewise the closed ball of radius is The set of all open (resp. closed) -balls at the origin forms a neighborhood basis of convex balanced sets that are open (resp. closed) in the -topology on

Stronger, weaker, and equivalent seminorms

The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker norms. If and are seminorms on then we say that is stronger than and that is weaker than if any of the following equivalent conditions holds:

  1. The topology on induced by is finer than the topology induced by
  2. If is a sequence in then in implies in [4]
  3. If is a net in then in implies in
  4. is bounded on [4]
  5. If then for all [4]
  6. There exists a real such that on [4]

The seminorms and are called equivalent if they are both weaker (or both stronger) than each other. This happens if they satisfy any of the following conditions:

  1. The topology on induced by is the same as the topology induced by
  2. is stronger than and is stronger than [4]
  3. If is a sequence in then if and only if
  4. There exist positive real numbers and such that

Normability and seminormability

A topological vector space (TVS) is said to be a seminormable space (respectively, a normable space) if its topology is induced by a single seminorm (resp. a single norm). A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and T1 (because a TVS is Hausdorff if and only if it is a T1 space). A locally bounded topological vector space is a topological vector space that possesses a bounded neighborhood of the origin.

Normability of topological vector spaces is characterized by Kolmogorov's normability criterion. A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin. [17] Thus a locally convex TVS is seminormable if and only if it has a non-empty bounded open set. [18] A TVS is normable if and only if it is a T1 space and admits a bounded convex neighborhood of the origin.

If is a Hausdorff locally convex TVS then the following are equivalent:

  1. is normable.
  2. is seminormable.
  3. has a bounded neighborhood of the origin.
  4. The strong dual of is normable. [19]
  5. The strong dual of is metrizable. [19]

Furthermore, is finite dimensional if and only if is normable (here denotes endowed with the weak-* topology).

The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional). [18]

Topological properties

Continuity of seminorms

If is a seminorm on a topological vector space then the following are equivalent: [5]

  1. is continuous.
  2. is continuous at 0; [3]
  3. is open in ; [3]
  4. is closed neighborhood of 0 in ; [3]
  5. is uniformly continuous on ; [3]
  6. There exists a continuous seminorm on such that [3]

In particular, if is a seminormed space then a seminorm on is continuous if and only if is dominated by a positive scalar multiple of [3]

If is a real TVS, is a linear functional on and is a continuous seminorm (or more generally, a sublinear function) on then on implies that is continuous. [6]

Continuity of linear maps

If is a map between seminormed spaces then let [15]

If is a linear map between seminormed spaces then the following are equivalent:

  1. is continuous;
  2. ; [15]
  3. There exists a real such that ; [15]
    • In this case,

If is continuous then for all [15]

The space of all continuous linear maps between seminormed spaces is itself a seminormed space under the seminorm This seminorm is a norm if is a norm. [15]

Generalizations

The concept of norm in composition algebras does not share the usual properties of a norm.

A composition algebra consists of an algebra over a field an involution and a quadratic form which is called the "norm". In several cases is an isotropic quadratic form so that has at least one null vector, contrary to the separation of points required for the usual norm discussed in this article.

An ultraseminorm or a non-Archimedean seminorm is a seminorm that also satisfies

Weakening subadditivity: Quasi-seminorms

A map is called a quasi-seminorm if it is (absolutely) homogeneous and there exists some such that The smallest value of for which this holds is called the multiplier of

A quasi-seminorm that separates points is called a quasi-norm on

Weakening homogeneity - -seminorms

A map is called a -seminorm if it is subadditive and there exists a such that and for all and scalars

A -seminorm that separates points is called a -norm on

We have the following relationship between quasi-seminorms and -seminorms:

Suppose that is a quasi-seminorm on a vector space with multiplier If then there exists -seminorm on equivalent to

See also

Notes

    Proofs

    1. If denotes the zero vector in while denote the zero scalar, then absolute homogeneity implies that
    2. Suppose is a seminorm and let Then absolute homogeneity implies The triangle inequality now implies Because was an arbitrary vector in it follows that which implies that (by subtracting from both sides). Thus which implies (by multiplying thru by ).
    3. Let and It remains to show that The triangle inequality implies Since as desired.

    Related Research Articles

    In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

    The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

    <span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

    In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

    1. Non-negativity: for every ,.
    2. Positive definiteness: for every , if and only if is the zero vector.
    3. Absolute homogeneity: for every and ,
    4. Triangle inequality: for every and ,

    In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

    In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

    In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

    In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some such that for all

    In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

    In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying

    In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced, in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.

    In linear algebra, a sublinear function, also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm except that it is not required to map non-zero vectors to non-zero values.

    In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.

    In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.

    In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

    In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite-dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite-dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

    <span class="mw-page-title-main">Minkowski functional</span> Function made from a set

    In mathematics, in the field of functional analysis, a Minkowski functional or gauge function is a function that recovers a notion of distance on a linear space.

    In functional analysis, a branch of mathematics, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm

    In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

    In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

    References

    1. 1 2 3 4 Kubrusly 2011, p. 200.
    2. 1 2 3 Narici & Beckenstein 2011, pp. 120–121.
    3. 1 2 3 4 5 6 7 8 9 10 Narici & Beckenstein 2011, pp. 116–128.
    4. 1 2 3 4 5 6 7 Wilansky 2013, pp. 15–21.
    5. 1 2 3 4 Schaefer & Wolff 1999, p. 40.
    6. 1 2 3 4 5 6 7 Narici & Beckenstein 2011, pp. 177–220.
    7. Narici & Beckenstein 2011, pp. 116−128.
    8. Narici & Beckenstein 2011, pp. 107–113.
    9. Schechter 1996, p. 691.
    10. 1 2 Narici & Beckenstein 2011, p. 149.
    11. 1 2 3 4 Narici & Beckenstein 2011, pp. 149–153.
    12. 1 2 3 Wilansky 2013, pp. 18–21.
    13. Obvious if is a real vector space. For the non-trivial direction, assume that on and let Let and be real numbers such that Then
    14. Wilansky 2013, p. 20.
    15. 1 2 3 4 5 6 Wilansky 2013, pp. 21–26.
    16. Narici & Beckenstein 2011, pp. 150.
    17. Wilansky 2013, pp. 50–51.
    18. 1 2 3 Narici & Beckenstein 2011, pp. 156–175.
    19. 1 2 Trèves 2006, pp. 136–149, 195–201, 240–252, 335–390, 420–433.
    20. Wilansky 2013, pp. 49–50.
    21. Narici & Beckenstein 2011, pp. 115–154.