Homogeneous function

Last updated

In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree. That is, if k is an integer, a function f of n variables is homogeneous of degree k if

Contents

for every and

For example, a homogeneous polynomial of degree k defines a homogeneous function of degree k.

The above definition extends to functions whose domain and codomain are vector spaces over a field F: a function between two F-vector spaces is homogeneous of degree if

(1)

for all nonzero and This definition is often further generalized to functions whose domain is not V, but a cone in V, that is, a subset C of V such that implies for every nonzero scalar s.

In the case of functions of several real variables and real vector spaces, a slightly more general form of homogeneity called positive homogeneity is often considered, by requiring only that the above identities hold for and allowing any real number k as a degree of homogeneity. Every homogeneous real function is positively homogeneous. The converse is not true, but is locally true in the sense that (for integer degrees) the two kinds of homogeneity cannot be distinguished by considering the behavior of a function near a given point.

A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective schemes.

Definitions

The concept of a homogeneous function was originally introduced for functions of several real variables. With the definition of vector spaces at the end of 19th century, the concept has been naturally extended to functions between vector spaces, since a tuple of variable values can be considered as a coordinate vector. It is this more general point of view that is described in this article.

There are two commonly used definitions. The general one works for vector spaces over arbitrary fields, and is restricted to degrees of homogeneity that are integers.

The second one supposes to work over the field of real numbers, or, more generally, over an ordered field. This definition restricts to positive values the scaling factor that occurs in the definition, and is therefore called positive homogeneity, the qualificative positive being often omitted when there is no risk of confusion. Positive homogeneity leads to considering more functions as homogeneous. For example, the absolute value and all norms are positively homogeneous functions that are not homogeneous.

The restriction of the scaling factor to real positive values allows also considering homogeneous functions whose degree of homogeneity is any real number.

General homogeneity

Let V and W be two vector spaces over a field F. A linear cone in V is a subset C of V such that for all and all nonzero

A homogeneous functionf from V to W is a partial function from V to W that has a linear cone C as its domain, and satisfies

for some integer k, every and every nonzero The integer k is called the degree of homogeneity, or simply the degree of f.

A typical example of a homogeneous function of degree k is the function defined by a homogeneous polynomial of degree k. The rational function defined by the quotient of two homogeneous polynomials is a homogeneous function; its degree is the difference of the degrees of the numerator and the denominator; its cone of definition is the linear cone of the points where the value of denominator is not zero.

Homogeneous functions play a fundamental role in projective geometry since any homogeneous function f from V to W defines a well-defined function between the projectivizations of V and W. The homogeneous rational functions of degree zero (those defined by the quotient of two homogeneous polynomial of the same degree) play an essential role in the Proj construction of projective schemes.

Positive homogeneity

When working over the real numbers, or more generally over an ordered field, it is commonly convenient to consider positive homogeneity, the definition being exactly the same as that in the preceding section, with "nonzero s" replaced by "s > 0" in the definitions of a linear cone and a homogeneous function.

This change allow considering (positively) homogeneous functions with any real number as their degrees, since exponentiation with a positive real base is well defined.

Even in the case of integer degrees, there are many useful functions that are positively homogeneous without being homogeneous. This is, in particular, the case of the absolute value function and norms, which are all positively homogeneous of degree 1. They are not homogeneous since if This remains true in the complex case, since the field of the complex numbers and every complex vector space can be considered as real vector spaces.

Euler's homogeneous function theorem is a characterization of positively homogeneous differentiable functions, which may be considered as the fundamental theorem on homogeneous functions.

Examples

A homogeneous function is not necessarily continuous, as shown by this example. This is the function
f
{\displaystyle f}
defined by
f
(
x
,
y
)
=
x
{\displaystyle f(x,y)=x}
if
x
y
>
0
{\displaystyle xy>0}
and
f
(
x
,
y
)
=
0
{\displaystyle f(x,y)=0}
if
x
y
<=
0.
{\displaystyle xy\leq 0.}
This function is homogeneous of degree 1, that is,
f
(
s
x
,
s
y
)
=
s
f
(
x
,
y
)
{\displaystyle f(sx,sy)=sf(x,y)}
for any real numbers
s
,
x
,
y
.
{\displaystyle s,x,y.}
It is discontinuous at
y
=
0
,
x
[?]
0.
{\displaystyle y=0,x\neq 0.} HomogeneousDiscontinuousFunction.gif
A homogeneous function is not necessarily continuous, as shown by this example. This is the function defined by if and if This function is homogeneous of degree 1, that is, for any real numbers It is discontinuous at

Simple example

The function is homogeneous of degree 2:

Absolute value and norms

The absolute value of a real number is a positively homogeneous function of degree 1, which is not homogeneous, since if and if

The absolute value of a complex number is a positively homogeneous function of degree over the real numbers (that is, when considering the complex numbers as a vector space over the real numbers). It is not homogeneous, over the real numbers as well as over the complex numbers.

More generally, every norm and seminorm is a positively homogeneous function of degree 1 which is not a homogeneous function. As for the absolute value, if the norm or semi-norm is defined on a vector space over the complex numbers, this vector space has to be considered as vector space over the real number for applying the definition of a positively homogeneous function.

Linear functions

Any linear map between vector spaces over a field F is homogeneous of degree 1, by the definition of linearity:

for all and

Similarly, any multilinear function is homogeneous of degree by the definition of multilinearity:

for all and

Homogeneous polynomials

Monomials in variables define homogeneous functions For example,

is homogeneous of degree 10 since

The degree is the sum of the exponents on the variables; in this example,

A homogeneous polynomial is a polynomial made up of a sum of monomials of the same degree. For example,

is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions.

Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree by raising it to the power So for example, the following function is positively homogeneous of degree 1 but not homogeneous:

Min/max

For every set of weights the following functions are positively homogeneous of degree 1, but not homogeneous:

Rational functions

Rational functions formed as the ratio of two homogeneous polynomials are homogeneous functions in their domain, that is, off of the linear cone formed by the zeros of the denominator. Thus, if is homogeneous of degree and is homogeneous of degree then is homogeneous of degree away from the zeros of

Non-examples

The homogeneous real functions of a single variable have the form for some constant c. So, the affine function the natural logarithm and the exponential function are not homogeneous.

Euler's theorem

Roughly speaking, Euler's homogeneous function theorem asserts that the positively homogeneous functions of a given degree are exactly the solution of a specific partial differential equation. More precisely:

Euler's homogeneous function theorem  If f is a (partial) function of n real variables that is positively homogeneous of degree k, and continuously differentiable in some open subset of then it satisfies in this open set the partial differential equation

Conversely, every maximal continuously differentiable solution of this partial differentiable equation is a positively homogeneous function of degree k, defined on a positive cone (here, maximal means that the solution cannot be prolongated to a function with a larger domain).

Proof

For having simpler formulas, we set The first part results by using the chain rule for differentiating both sides of the equation with respect to and taking the limit of the result when s tends to 1.

The converse is proved by integrating a simple differential equation. Let be in the interior of the domain of f. For s sufficiently close of 1, the function is well defined. The partial differential equation implies that

The solutions of this linear differential equation have the form

Therefore,
if s is sufficiently close to 1. If this solution of the partial differential equation would not be defined for all positive s, then the functional equation would allow to prolongate the solution, and the partial differential equation implies that this prolongation is unique. So, the domain of a maximal solution of the partial differential equation is a linear cone, and the solution is positively homogeneous of degree k.

As a consequence, if is continuously differentiable and homogeneous of degree its first-order partial derivatives are homogeneous of degree This results from Euler's theorem by differentiating the partial differential equation with respect to one variable.

In the case of a function of a single real variable (), the theorem implies that a continuously differentiable and positively homogeneous function of degree k has the form for and for The constants and are not necessarily the same, as it is the case for the absolute value.

Application to differential equations

The substitution converts the ordinary differential equation

where and are homogeneous functions of the same degree, into the separable differential equation

Generalizations

Homogeneity under a monoid action

The definitions given above are all specialized cases of the following more general notion of homogeneity in which can be any set (rather than a vector space) and the real numbers can be replaced by the more general notion of a monoid.

Let be a monoid with identity element let and be sets, and suppose that on both and there are defined monoid actions of Let be a non-negative integer and let be a map. Then is said to be homogeneous of degree over if for every and

If in addition there is a function denoted by called an absolute value then is said to be absolutely homogeneous of degree over if for every and

A function is homogeneous over (resp. absolutely homogeneous over ) if it is homogeneous of degree over (resp. absolutely homogeneous of degree over ).

More generally, it is possible for the symbols to be defined for with being something other than an integer (for example, if is the real numbers and is a non-zero real number then is defined even though is not an integer). If this is the case then will be called homogeneous of degree over if the same equality holds:

The notion of being absolutely homogeneous of degree over is generalized similarly.

Distributions (generalized functions)

A continuous function on is homogeneous of degree if and only if

for all compactly supported test functions ; and nonzero real Equivalently, making a change of variable is homogeneous of degree if and only if

for all and all test functions The last display makes it possible to define homogeneity of distributions. A distribution is homogeneous of degree if

for all nonzero real and all test functions Here the angle brackets denote the pairing between distributions and test functions, and is the mapping of scalar division by the real number

Glossary of name variants

Let be a map between two vector spaces over a field (usually the real numbers or complex numbers ). If is a set of scalars, such as or for example, then is said to be homogeneous over if for every and scalar For instance, every additive map between vector spaces is homogeneous over the rational numbers although it might not be homogeneous over the real numbers

The following commonly encountered special cases and variations of this definition have their own terminology:

  1. (Strict) Positive homogeneity: [1] for all and all positive real
    • When the function is valued in a vector space or field, then this property is logically equivalent [proof 1] to nonnegative homogeneity, which by definition means: [2] for all and all non-negative real It is for this reason that positive homogeneity is often also called nonnegative homogeneity. However, for functions valued in the extended real numbers which appear in fields like convex analysis, the multiplication will be undefined whenever and so these statements are not necessarily always interchangeable. [note 1]
    • This property is used in the definition of a sublinear function. [1] [2]
    • Minkowski functionals are exactly those non-negative extended real-valued functions with this property.
  2. Real homogeneity: for all and all real
  3. Homogeneity: [3] for all and all scalars
    • It is emphasized that this definition depends on the scalar field underlying the domain
    • This property is used in the definition of linear functionals and linear maps. [2]
  4. Conjugate homogeneity : [4] for all and all scalars
    • If then typically denotes the complex conjugate of . But more generally, as with semilinear maps for example, could be the image of under some distinguished automorphism of
    • Along with additivity, this property is assumed in the definition of an antilinear map. It is also assumed that one of the two coordinates of a sesquilinear form has this property (such as the inner product of a Hilbert space).

All of the above definitions can be generalized by replacing the condition with in which case that definition is prefixed with the word "absolute" or "absolutely." For example,

  1. Absolute homogeneity: [2] for all and all scalars
    • This property is used in the definition of a seminorm and a norm.

If is a fixed real number then the above definitions can be further generalized by replacing the condition with (and similarly, by replacing with for conditions using the absolute value, etc.), in which case the homogeneity is said to be "of degree " (where in particular, all of the above definitions are "of degree "). For instance,

  1. Real homogeneity of degree: for all and all real
  2. Homogeneity of degree: for all and all scalars
  3. Absolute real homogeneity of degree: for all and all real
  4. Absolute homogeneity of degree: for all and all scalars

A nonzero continuous function that is homogeneous of degree on extends continuously to if and only if

See also

Notes

  1. However, if such an satisfies for all and then necessarily and whenever are both real then will hold for all

Proofs

  1. Assume that is strictly positively homogeneous and valued in a vector space or a field. Then so subtracting from both sides shows that Writing then for any which shows that is nonnegative homogeneous.

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

The derivative is a fundamental tool of calculus that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,

In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space. There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly, and may be extended so as to act on related objects.

The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

<span class="mw-page-title-main">Normal (geometry)</span> Line or vector perpendicular to a curve or a surface

In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

In linear algebra, a sublinear function, also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm except that it is not required to map non-zero vectors to non-zero values.

In mathematics, a homogeneous distribution is a distribution S on Euclidean space Rn or Rn \ {0} that is homogeneous in the sense that, roughly speaking,

References

  1. 1 2 Schechter 1996, pp. 313–314.
  2. 1 2 3 4 Kubrusly 2011, p. 200.
  3. Kubrusly 2011, p. 55.
  4. Kubrusly 2011, p. 310.

Sources