Extreme point

Last updated
A convex set in light blue, and its extreme points in red. Extreme points.svg
A convex set in light blue, and its extreme points in red.

In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of [1]

Contents

Definition

Throughout, it is assumed that is a real or complex vector space.

For any say that lies between [2] and if and there exists a such that

If is a subset of and then is called an extreme point [2] of if it does not lie between any two distinct points of That is, if there does not exist and such that and The set of all extreme points of is denoted by

Generalizations

If is a subset of a vector space then a linear sub-variety (that is, an affine subspace) of the vector space is called a support variety if meets (that is, is not empty) and every open segment whose interior meets is necessarily a subset of [3] A 0-dimensional support variety is called an extreme point of [3]

Characterizations

The midpoint [2] of two elements and in a vector space is the vector

For any elements and in a vector space, the set is called the closed line segment or closed interval between and The open line segment or open interval between and is when while it is when [2] The points and are called the endpoints of these interval. An interval is said to be a non−degenerate interval or a proper interval if its endpoints are distinct. The midpoint of an interval is the midpoint of its endpoints.

The closed interval is equal to the convex hull of if (and only if) So if is convex and then

If is a nonempty subset of and is a nonempty subset of then is called a face [2] of if whenever a point lies between two points of then those two points necessarily belong to

Theorem [2]   Let be a non-empty convex subset of a vector space and let Then the following statements are equivalent:

  1. is an extreme point of
  2. is convex.
  3. is not the midpoint of a non-degenerate line segment contained in
  4. for any if then
  5. if is such that both and belong to then
  6. is a face of

Examples

If are two real numbers then and are extreme points of the interval However, the open interval has no extreme points. [2] Any open interval in has no extreme points while any non-degenerate closed interval not equal to does have extreme points (that is, the closed interval's endpoint(s)). More generally, any open subset of finite-dimensional Euclidean space has no extreme points.

The extreme points of the closed unit disk in is the unit circle.

The perimeter of any convex polygon in the plane is a face of that polygon. [2] The vertices of any convex polygon in the plane are the extreme points of that polygon.

An injective linear map sends the extreme points of a convex set to the extreme points of the convex set [2] This is also true for injective affine maps.

Properties

The extreme points of a compact convex set form a Baire space (with the subspace topology) but this set may fail to be closed in [2]

Theorems

Krein–Milman theorem

The Krein–Milman theorem is arguably one of the most well-known theorems about extreme points.

Krein–Milman theorem   If is convex and compact in a locally convex topological vector space, then is the closed convex hull of its extreme points: In particular, such a set has extreme points.

For Banach spaces

These theorems are for Banach spaces with the Radon–Nikodym property.

A theorem of Joram Lindenstrauss states that, in a Banach space with the Radon–Nikodym property, a nonempty closed and bounded set has an extreme point. (In infinite-dimensional spaces, the property of compactness is stronger than the joint properties of being closed and being bounded. [4] )

Theorem (Gerald Edgar)  Let be a Banach space with the Radon–Nikodym property, let be a separable, closed, bounded, convex subset of and let be a point in Then there is a probability measure on the universally measurable sets in such that is the barycenter of and the set of extreme points of has -measure 1. [5]

Edgar’s theorem implies Lindenstrauss’s theorem.

A closed convex subset of a topological vector space is called strictly convex if every one of its (topological) boundary points is an extreme point. [6] The unit ball of any Hilbert space is a strictly convex set. [6]

k-extreme points

More generally, a point in a convex set is -extreme if it lies in the interior of a -dimensional convex set within but not a -dimensional convex set within Thus, an extreme point is also a -extreme point. If is a polytope, then the -extreme points are exactly the interior points of the -dimensional faces of More generally, for any convex set the -extreme points are partitioned into -dimensional open faces.

The finite-dimensional Krein–Milman theorem, which is due to Minkowski, can be quickly proved using the concept of -extreme points. If is closed, bounded, and -dimensional, and if is a point in then is -extreme for some The theorem asserts that is a convex combination of extreme points. If then it is immediate. Otherwise lies on a line segment in which can be maximally extended (because is closed and bounded). If the endpoints of the segment are and then their extreme rank must be less than that of and the theorem follows by induction.

See also

Citations

    1. Saltzman, Matthew. "What is the difference between corner points and extreme points in linear programming problems?".
    2. 1 2 3 4 5 6 7 8 9 10 Narici & Beckenstein 2011, pp. 275–339.
    3. 1 2 Grothendieck 1973, p. 186.
    4. Artstein, Zvi (1980). "Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points". SIAM Review. 22 (2): 172–185. doi:10.1137/1022026. JSTOR   2029960. MR   0564562.
    5. Edgar GA. A noncompact Choquet theorem. Proceedings of the American Mathematical Society. 1975;49(2):354–8.
    6. 1 2 Halmos 1982, p. 5.
    7. Artstein, Zvi (1980). "Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points". SIAM Review. 22 (2): 172–185. doi:10.1137/1022026. JSTOR   2029960. MR   0564562.

    Bibliography

    Related Research Articles

    In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

    Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself, there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.

    <span class="mw-page-title-main">Compact space</span> Type of mathematical space

    In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

    <span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

    In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

    The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

    In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

    In mathematics, a (real) interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. An interval can contain neither endpoint, either endpoint, or both endpoints.

    In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.

    In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

    <span class="mw-page-title-main">Closed graph theorem</span> Theorem relating continuity to graphs

    In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous.

    In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

    In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

    In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.

    In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki.

    In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .

    In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

    In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

    <span class="mw-page-title-main">Krein–Milman theorem</span> On when a space equals the closed convex hull of its extreme points

    In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs).

    <span class="mw-page-title-main">Convex cone</span> Mathematical set closed under positive linear combinations

    In linear algebra, a cone—sometimes called a linear cone for distinguishing it from other sorts of cones—is a subset of a vector space that is closed under positive scalar multiplication; that is, C is a cone if implies for every positive scalar s. A cone need not be convex, or even look like a cone in Euclidean space.

    In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics.