Banach algebra

Last updated

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

Contents

This ensures that the multiplication operation is continuous.

A Banach algebra is called unital if it has an identity element for the multiplication whose norm is and commutative if its multiplication is commutative. Any Banach algebra (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra so as to form a closed ideal of . Often one assumes a priori that the algebra under consideration is unital: for one can develop much of the theory by considering and then applying the outcome in the original algebra. However, this is not the case all the time. For example, one cannot define all the trigonometric functions in a Banach algebra without identity.

The theory of real Banach algebras can be very different from the theory of complex Banach algebras. For example, the spectrum of an element of a nontrivial complex Banach algebra can never be empty, whereas in a real Banach algebra it could be empty for some elements.

Banach algebras can also be defined over fields of -adic numbers. This is part of -adic analysis.

Examples

The prototypical example of a Banach algebra is , the space of (complex-valued) continuous functions, defined on a locally compact Hausdorff space , that vanish at infinity. is unital if and only if is compact. The complex conjugation being an involution, is in fact a C*-algebra. More generally, every C*-algebra is a Banach algebra by definition.

Properties

Several elementary functions that are defined via power series may be defined in any unital Banach algebra; examples include the exponential function and the trigonometric functions, and more generally any entire function. (In particular, the exponential map can be used to define abstract index groups.) The formula for the geometric series remains valid in general unital Banach algebras. The binomial theorem also holds for two commuting elements of a Banach algebra.

The set of invertible elements in any unital Banach algebra is an open set, and the inversion operation on this set is continuous (and hence is a homeomorphism), so that it forms a topological group under multiplication. [3]

If a Banach algebra has unit then cannot be a commutator; that is, for any This is because and have the same spectrum except possibly

The various algebras of functions given in the examples above have very different properties from standard examples of algebras such as the reals. For example:

Spectral theory

Unital Banach algebras over the complex field provide a general setting to develop spectral theory. The spectrum of an element denoted by , consists of all those complex scalars such that is not invertible in The spectrum of any element is a closed subset of the closed disc in with radius and center and thus is compact. Moreover, the spectrum of an element is non-empty and satisfies the spectral radius formula:

Given the holomorphic functional calculus allows to define for any function holomorphic in a neighborhood of Furthermore, the spectral mapping theorem holds: [5]

When the Banach algebra is the algebra of bounded linear operators on a complex Banach space (for example, the algebra of square matrices), the notion of the spectrum in coincides with the usual one in operator theory. For (with a compact Hausdorff space ), one sees that:

The norm of a normal element of a C*-algebra coincides with its spectral radius. This generalizes an analogous fact for normal operators.

Let be a complex unital Banach algebra in which every non-zero element is invertible (a division algebra). For every there is such that is not invertible (because the spectrum of is not empty) hence this algebra is naturally isomorphic to (the complex case of the Gelfand–Mazur theorem).

Ideals and characters

Let be a unital commutative Banach algebra over Since is then a commutative ring with unit, every non-invertible element of belongs to some maximal ideal of Since a maximal ideal in is closed, is a Banach algebra that is a field, and it follows from the Gelfand–Mazur theorem that there is a bijection between the set of all maximal ideals of and the set of all nonzero homomorphisms from to The set is called the "structure space" or "character space" of and its members "characters".

A character is a linear functional on that is at the same time multiplicative, and satisfies Every character is automatically continuous from to since the kernel of a character is a maximal ideal, which is closed. Moreover, the norm (that is, operator norm) of a character is one. Equipped with the topology of pointwise convergence on (that is, the topology induced by the weak-* topology of ), the character space, is a Hausdorff compact space.

For any

where is the Gelfand representation of defined as follows: is the continuous function from to given by The spectrum of in the formula above, is the spectrum as element of the algebra of complex continuous functions on the compact space Explicitly,

As an algebra, a unital commutative Banach algebra is semisimple (that is, its Jacobson radical is zero) if and only if its Gelfand representation has trivial kernel. An important example of such an algebra is a commutative C*-algebra. In fact, when is a commutative unital C*-algebra, the Gelfand representation is then an isometric *-isomorphism between and [lower-alpha 1]

Banach *-algebras

A Banach *-algebra is a Banach algebra over the field of complex numbers, together with a map that has the following properties:

  1. for all (so the map is an involution).
  2. for all
  3. for every and every here, denotes the complex conjugate of
  4. for all

In other words, a Banach *-algebra is a Banach algebra over that is also a *-algebra.

In most natural examples, one also has that the involution is isometric, that is,

Some authors include this isometric property in the definition of a Banach *-algebra.

A Banach *-algebra satisfying is a C*-algebra.

See also

Notes

  1. Proof: Since every element of a commutative C*-algebra is normal, the Gelfand representation is isometric; in particular, it is injective and its image is closed. But the image of the Gelfand representation is dense by the Stone–Weierstrass theorem.

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,
<span class="mw-page-title-main">Spinor</span> Non-tensorial representation of the spin group; represents fermions in physics

In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

In mathematics, the Gelfand representation in functional analysis is either of two things:

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces, in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras. In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory, and provide the right framework to extend the notion of Morita equivalence to C*-algebras. They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory, and groupoid C*-algebras.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Conway 1990 , Example VII.1.8.
  2. 1 2 Conway 1990 , Example VII.1.9.
  3. Conway 1990 , Theorem VII.2.2.
  4. García, Miguel Cabrera; Palacios, Angel Rodríguez (1995). "A New Simple Proof of the Gelfand-Mazur-Kaplansky Theorem". Proceedings of the American Mathematical Society. 123 (9): 2663–2666. doi:10.2307/2160559. ISSN   0002-9939. JSTOR   2160559.
  5. Takesaki 1979 , Proposition 2.8.