Borel functional calculus

Last updated

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. [1] [2] Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

Contents

The 'scope' here means the kind of function of an operator which is allowed. The Borel functional calculus is more general than the continuous functional calculus, and its focus is different than the holomorphic functional calculus.

More precisely, the Borel functional calculus allows for applying an arbitrary Borel function to a self-adjoint operator, in a way that generalizes applying a polynomial function.

Motivation

If T is a self-adjoint operator on a finite-dimensional inner product space H, then H has an orthonormal basis {e1, ..., e} consisting of eigenvectors of T, that is

Thus, for any positive integer n,

If only polynomials in T are considered, then one gets the holomorphic functional calculus. The relation also holds for more general functions of T. Given a Borel function h, one can define an operator h(T) by specifying its behavior on the basis:

Generally, any self-adjoint operator T is unitarily equivalent to a multiplication operator; this means that for many purposes, T can be considered as an operator

acting on L2 of some measure space. The domain of T consists of those functions whose above expression is in L2. In such a case, one can define analogously

For many technical purposes, the previous formulation is good enough. However, it is desirable to formulate the functional calculus in a way that does not depend on the particular representation of T as a multiplication operator. That's what we do in the next section.

The bounded functional calculus

Formally, the bounded Borel functional calculus of a self adjoint operator T on Hilbert space H is a mapping defined on the space of bounded complex-valued Borel functions f on the real line,

such that the following conditions hold

Theorem   Any self-adjoint operator T has a unique Borel functional calculus.

This defines the functional calculus for bounded functions applied to possibly unbounded self-adjoint operators. Using the bounded functional calculus, one can prove part of the Stone's theorem on one-parameter unitary groups:

Theorem   If A is a self-adjoint operator, then

is a 1-parameter strongly continuous unitary group whose infinitesimal generator is iA.

As an application, we consider the Schrödinger equation, or equivalently, the dynamics of a quantum mechanical system. In non-relativistic quantum mechanics, the Hamiltonian operator H models the total energy observable of a quantum mechanical system S. The unitary group generated by iH corresponds to the time evolution of S.

We can also use the Borel functional calculus to abstractly solve some linear initial value problems such as the heat equation, or Maxwell's equations.

Existence of a functional calculus

The existence of a mapping with the properties of a functional calculus requires proof. For the case of a bounded self-adjoint operator T, the existence of a Borel functional calculus can be shown in an elementary way as follows:

First pass from polynomial to continuous functional calculus by using the Stone–Weierstrass theorem. The crucial fact here is that, for a bounded self adjoint operator T and a polynomial p,

Consequently, the mapping

is an isometry and a densely defined homomorphism on the ring of polynomial functions. Extending by continuity defines f(T) for a continuous function f on the spectrum of T. The Riesz-Markov theorem then allows us to pass from integration on continuous functions to spectral measures, and this is the Borel functional calculus.

Alternatively, the continuous calculus can be obtained via the Gelfand transform, in the context of commutative Banach algebras. Extending to measurable functions is achieved by applying Riesz-Markov, as above. In this formulation, T can be a normal operator.

Given an operator T, the range of the continuous functional calculus hh(T) is the (abelian) C*-algebra C(T) generated by T. The Borel functional calculus has a larger range, that is the closure of C(T) in the weak operator topology, a (still abelian) von Neumann algebra.

The general functional calculus

We can also define the functional calculus for not necessarily bounded Borel functions h; the result is an operator which in general fails to be bounded. Using the multiplication by a function f model of a self-adjoint operator given by the spectral theorem, this is multiplication by the composition of h with f.

Theorem   Let T be a self-adjoint operator on H, h a real-valued Borel function on R. There is a unique operator S such that

The operator S of the previous theorem is denoted h(T).

More generally, a Borel functional calculus also exists for (bounded) normal operators.

Resolution of the identity

Let be a self-adjoint operator. If is a Borel subset of R, and is the indicator function of E, then is a self-adjoint projection on H. Then mapping

is a projection-valued measure. The measure of R with respect to is the identity operator on H. In other words, the identity operator can be expressed as the spectral integral

.

Stone's formula [3] expresses the spectral measure in terms of the resolvent :

Depending on the source, the resolution of the identity is defined, either as a projection-valued measure , [4] or as a one-parameter family of projection-valued measures with . [5]

In the case of a discrete measure (in particular, when H is finite-dimensional), can be written as

in the Dirac notation, where each is a normalized eigenvector of T. The set is an orthonormal basis of H.

In physics literature, using the above as heuristic, one passes to the case when the spectral measure is no longer discrete and write the resolution of identity as

and speak of a "continuous basis", or "continuum of basis states", Mathematically, unless rigorous justifications are given, this expression is purely formal.

Related Research Articles

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes as input a function and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

<span class="mw-page-title-main">Reproducing kernel Hilbert space</span> In functional analysis, a Hilbert space

In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The converse does not need to be true. Informally, this can be shown by looking at the supremum norm: the sequence of functions converges pointwise, but does not converge uniformly i.e. does not converge with respect to the supremum norm.

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.

The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.

In operator theory, Naimark's dilation theorem is a result that characterizes positive operator valued measures. It can be viewed as a consequence of Stinespring's dilation theorem.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In operator theory, a bounded operator T: XY between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

This is a glossary for the terminology in a mathematical field of functional analysis.

In the calculus of variations, a subfield of mathematics, quasiconvexity is a generalisation of the notion of convexity. It is used to characterise the integrand of a functional and related to the existence of minimisers. Under some natural conditions, quasiconvexity of the integrand is a necessary and sufficient condition for a functional

References

  1. Kadison, Richard V.; Ringrose, John R. (1997). Fundamentals of the Theory of Operator Algebras: Vol 1. Amer Mathematical Society. ISBN   0-8218-0819-2.
  2. Reed, Michael; Simon, Barry (1981). Methods of Modern Mathematical Physics. Academic Press. ISBN   0-12-585050-6.
  3. Takhtajan, Leon A. (2020). "Etudes of the resolvent". Russian Mathematical Surveys. 75 (1): 147–186. arXiv: 2004.11950 . doi:10.1070/RM9917.
  4. Rudin, Walter (1991). Functional Analysis. Boston, Mass.: McGraw-Hill Science, Engineering & Mathematics. pp. 316–317. ISBN   978-0-07-054236-5.
  5. Akhiezer, Naum Ilʹich (1981). Theory of Linear Operators in Hilbert Space. Boston: Pitman. p. 213. ISBN   0-273-08496-8.