Continuous linear operator

Last updated

In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.

Contents

An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator.

Continuous linear operators

Characterizations of continuity

Suppose that is a linear operator between two topological vector spaces (TVSs). The following are equivalent:

  1. is continuous.
  2. is continuous at some point
  3. is continuous at the origin in

If is locally convex then this list may be extended to include:

  1. for every continuous seminorm on there exists a continuous seminorm on such that [1]

If and are both Hausdorff locally convex spaces then this list may be extended to include:

  1. is weakly continuous and its transpose maps equicontinuous subsets of to equicontinuous subsets of

If is a sequential space (such as a pseudometrizable space) then this list may be extended to include:

  1. is sequentially continuous at some (or equivalently, at every) point of its domain.

If is pseudometrizable or metrizable (such as a normed or Banach space) then we may add to this list:

  1. is a bounded linear operator (that is, it maps bounded subsets of to bounded subsets of ). [2]

If is seminormable space (such as a normed space) then this list may be extended to include:

  1. maps some neighborhood of 0 to a bounded subset of [3]

If and are both normed or seminormed spaces (with both seminorms denoted by ) then this list may be extended to include:

  1. for every there exists some such that

If and are Hausdorff locally convex spaces with finite-dimensional then this list may be extended to include:

  1. the graph of is closed in [4]

Continuity and boundedness

Throughout, is a linear map between topological vector spaces (TVSs).

Bounded subset

The notion of a "bounded set" for a topological vector space is that of being a von Neumann bounded set. If the space happens to also be a normed space (or a seminormed space) then a subset is von Neumann bounded if and only if it is norm bounded, meaning that A subset of a normed (or seminormed) space is called bounded if it is norm-bounded (or equivalently, von Neumann bounded). For example, the scalar field ( or ) with the absolute value is a normed space, so a subset is bounded if and only if is finite, which happens if and only if is contained in some open (or closed) ball centered at the origin (zero).

Any translation, scalar multiple, and subset of a bounded set is again bounded.

Function bounded on a set

If is a set then is said to be bounded on if is a bounded subset of which if is a normed (or seminormed) space happens if and only if A linear map is bounded on a set if and only if it is bounded on for every (because and any translation of a bounded set is again bounded) if and only if it is bounded on for every non-zero scalar (because and any scalar multiple of a bounded set is again bounded). Consequently, if is a normed or seminormed space, then a linear map is bounded on some (equivalently, on every) non-degenerate open or closed ball (not necessarily centered at the origin, and of any radius) if and only if it is bounded on the closed unit ball centered at the origin

Bounded linear maps

By definition, a linear map between TVSs is said to be bounded and is called a bounded linear operator if for every (von Neumann) bounded subset of its domain, is a bounded subset of it codomain; or said more briefly, if it is bounded on every bounded subset of its domain. When the domain is a normed (or seminormed) space then it suffices to check this condition for the open or closed unit ball centered at the origin. Explicitly, if denotes this ball then is a bounded linear operator if and only if is a bounded subset of if is also a (semi)normed space then this happens if and only if the operator norm is finite. Every sequentially continuous linear operator is bounded. [5]

Function bounded on a neighborhood and local boundedness

In contrast, a map is said to be bounded on a neighborhood of a point or locally bounded at if there exists a neighborhood of this point in such that is a bounded subset of It is "bounded on a neighborhood" (of some point) if there exists some point in its domain at which it is locally bounded, in which case this linear map is necessarily locally bounded at every point of its domain. The term "locally bounded" is sometimes used to refer to a map that is locally bounded at every point of its domain, but some functional analysis authors define "locally bounded" to instead be a synonym of "bounded linear operator", which are related but not equivalent concepts. For this reason, this article will avoid the term "locally bounded" and instead say "locally bounded at every point" (there is no disagreement about the definition of "locally bounded at a point").

Bounded on a neighborhood implies continuous implies bounded

A linear map is "bounded on a neighborhood" (of some point) if and only if it is locally bounded at every point of its domain, in which case it is necessarily continuous [2] (even if its domain is not a normed space) and thus also bounded (because a continuous linear operator is always a bounded linear operator). [6]

For any linear map, if it is bounded on a neighborhood then it is continuous, [2] [7] and if it is continuous then it is bounded. [6] The converse statements are not true in general but they are both true when the linear map's domain is a normed space. Examples and additional details are now given below.

Continuous and bounded but not bounded on a neighborhood

The next example shows that it is possible for a linear map to be continuous (and thus also bounded) but not bounded on any neighborhood. In particular, it demonstrates that being "bounded on a neighborhood" is not always synonymous with being "bounded".

Example: A continuous and bounded linear map that is not bounded on any neighborhood: If is the identity map on some locally convex topological vector space then this linear map is always continuous (indeed, even a TVS-isomorphism) and bounded, but is bounded on a neighborhood if and only if there exists a bounded neighborhood of the origin in which is equivalent to being a seminormable space (which if is Hausdorff, is the same as being a normable space). This shows that it is possible for a linear map to be continuous but not bounded on any neighborhood. Indeed, this example shows that every locally convex space that is not seminormable has a linear TVS-automorphism that is not bounded on any neighborhood of any point. Thus although every linear map that is bounded on a neighborhood is necessarily continuous, the converse is not guaranteed in general.

Guaranteeing converses

To summarize the discussion below, for a linear map on a normed (or seminormed) space, being continuous, being bounded, and being bounded on a neighborhood are all equivalent. A linear map whose domain or codomain is normable (or seminormable) is continuous if and only if it bounded on a neighborhood. And a bounded linear operator valued in a locally convex space will be continuous if its domain is (pseudo)metrizable [2] or bornological. [6]

Guaranteeing that "continuous" implies "bounded on a neighborhood"

A TVS is said to be locally bounded if there exists a neighborhood that is also a bounded set. [8] For example, every normed or seminormed space is a locally bounded TVS since the unit ball centered at the origin is a bounded neighborhood of the origin. If is a bounded neighborhood of the origin in a (locally bounded) TVS then its image under any continuous linear map will be a bounded set (so this map is thus bounded on this neighborhood ). Consequently, a linear map from a locally bounded TVS into any other TVS is continuous if and only if it is bounded on a neighborhood. Moreover, any TVS with this property must be a locally bounded TVS. Explicitly, if is a TVS such that every continuous linear map (into any TVS) whose domain is is necessarily bounded on a neighborhood, then must be a locally bounded TVS (because the identity function is always a continuous linear map).

Any linear map from a TVS into a locally bounded TVS (such as any linear functional) is continuous if and only if it is bounded on a neighborhood. [8] Conversely, if is a TVS such that every continuous linear map (from any TVS) with codomain is necessarily bounded on a neighborhood, then must be a locally bounded TVS. [8] In particular, a linear functional on a arbitrary TVS is continuous if and only if it is bounded on a neighborhood. [8]

Thus when the domain or the codomain of a linear map is normable or seminormable, then continuity will be equivalent to being bounded on a neighborhood.

Guaranteeing that "bounded" implies "continuous"

A continuous linear operator is always a bounded linear operator. [6] But importantly, in the most general setting of a linear operator between arbitrary topological vector spaces, it is possible for a linear operator to be bounded but to not be continuous.

A linear map whose domain is pseudometrizable (such as any normed space) is bounded if and only if it is continuous. [2] The same is true of a linear map from a bornological space into a locally convex space. [6]

Guaranteeing that "bounded" implies "bounded on a neighborhood"

In general, without additional information about either the linear map or its domain or codomain, the map being "bounded" is not equivalent to it being "bounded on a neighborhood". If is a bounded linear operator from a normed space into some TVS then is necessarily continuous; this is because any open ball centered at the origin in is both a bounded subset (which implies that is bounded since is a bounded linear map) and a neighborhood of the origin in so that is thus bounded on this neighborhood of the origin, which (as mentioned above) guarantees continuity.

Continuous linear functionals

Every linear functional on a topological vector space (TVS) is a linear operator so all of the properties described above for continuous linear operators apply to them. However, because of their specialized nature, we can say even more about continuous linear functionals than we can about more general continuous linear operators.

Characterizing continuous linear functionals

Let be a topological vector space (TVS) over the field ( need not be Hausdorff or locally convex) and let be a linear functional on The following are equivalent: [1]

  1. is continuous.
  2. is uniformly continuous on
  3. is continuous at some point of
  4. is continuous at the origin.
    • By definition, said to be continuous at the origin if for every open (or closed) ball of radius centered at in the codomain there exists some neighborhood of the origin in such that
    • If is a closed ball then the condition holds if and only if
      • It is important that be a closed ball in this supremum characterization. Assuming that is instead an open ball, then is a sufficient but not necessary condition for to be true (consider for example when is the identity map on and ), whereas the non-strict inequality is instead a necessary but not sufficient condition for to be true (consider for example and the closed neighborhood ). This is one of several reasons why many definitions involving linear functionals, such as polar sets for example, involve closed (rather than open) neighborhoods and non-strict (rather than strict) inequalities.
  5. is bounded on a neighborhood (of some point). Said differently, is a locally bounded at some point of its domain.
    • Explicitly, this means that there exists some neighborhood of some point such that is a bounded subset of [2] that is, such that This supremum over the neighborhood is equal to if and only if
    • Importantly, a linear functional being "bounded on a neighborhood" is in general not equivalent to being a "bounded linear functional" because (as described above) it is possible for a linear map to be bounded but not continuous. However, continuity and boundedness are equivalent if the domain is a normed or seminormed space; that is, for a linear functional on a normed space, being "bounded" is equivalent to being "bounded on a neighborhood".
  6. is bounded on a neighborhood of the origin. Said differently, is a locally bounded at the origin.
    • The equality holds for all scalars and when then will be neighborhood of the origin. So in particular, if is a positive real number then for every positive real the set is a neighborhood of the origin and Using proves the next statement when
  7. There exists some neighborhood of the origin such that
    • This inequality holds if and only if for every real which shows that the positive scalar multiples of this single neighborhood will satisfy the definition of continuity at the origin given in (4) above.
    • By definition of the set which is called the (absolute) polar of the inequality holds if and only if Polar sets, and so also this particular inequality, play important roles in duality theory.
  8. is a locally bounded at every point of its domain.
  9. The kernel of is closed in [2]
  10. Either or else the kernel of is not dense in [2]
  11. There exists a continuous seminorm on such that
    • In particular, is continuous if and only if the seminorm is a continuous.
  12. The graph of is closed. [9]
  13. is continuous, where denotes the real part of

If and are complex vector spaces then this list may be extended to include:

  1. The imaginary part of is continuous.

If the domain is a sequential space then this list may be extended to include:

  1. is sequentially continuous at some (or equivalently, at every) point of its domain. [2]

If the domain is metrizable or pseudometrizable (for example, a Fréchet space or a normed space) then this list may be extended to include:

  1. is a bounded linear operator (that is, it maps bounded subsets of its domain to bounded subsets of its codomain). [2]

If the domain is a bornological space (for example, a pseudometrizable TVS) and is locally convex then this list may be extended to include:

  1. is a bounded linear operator. [2]
  2. is sequentially continuous at some (or equivalently, at every) point of its domain. [10]
  3. is sequentially continuous at the origin.

and if in addition is a vector space over the real numbers (which in particular, implies that is real-valued) then this list may be extended to include:

  1. There exists a continuous seminorm on such that [1]
  2. For some real the half-space is closed.
  3. For any real the half-space is closed. [11]

If is complex then either all three of and are continuous (respectively, bounded), or else all three are discontinuous (respectively, unbounded).

Examples

Every linear map whose domain is a finite-dimensional Hausdorff topological vector space (TVS) is continuous. This is not true if the finite-dimensional TVS is not Hausdorff.

Every (constant) map between TVS that is identically equal to zero is a linear map that is continuous, bounded, and bounded on the neighborhood of the origin. In particular, every TVS has a non-empty continuous dual space (although it is possible for the constant zero map to be its only continuous linear functional).

Suppose is any Hausdorff TVS. Then every linear functional on is necessarily continuous if and only if every vector subspace of is closed. [12] Every linear functional on is necessarily a bounded linear functional if and only if every bounded subset of is contained in a finite-dimensional vector subspace. [13]

Properties

A locally convex metrizable topological vector space is normable if and only if every bounded linear functional on it is continuous.

A continuous linear operator maps bounded sets into bounded sets.

The proof uses the facts that the translation of an open set in a linear topological space is again an open set, and the equality

for any subset of and any which is true due to the additivity of

Properties of continuous linear functionals

If is a complex normed space and is a linear functional on then [14] (where in particular, one side is infinite if and only if the other side is infinite).

Every non-trivial continuous linear functional on a TVS is an open map. [1] If is a linear functional on a real vector space and if is a seminorm on then if and only if [1]

If is a linear functional and is a non-empty subset, then by defining the sets

the supremum can be written more succinctly as because

If is a scalar then

so that if is a real number and is the closed ball of radius centered at the origin then the following are equivalent:

See also

Related Research Articles

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from into its bidual is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space is reflexive if and only if the canonical evaluation map from into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is not reflexive but is nevertheless isometrically isomorphic to its bidual.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some such that for all

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.

In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions. If the spaces involved are also topological spaces, then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces, the answer is generally no: there exist discontinuous linear maps. If the domain of definition is complete, it is trickier; such maps can be proven to exist, but the proof relies on the axiom of choice and does not provide an explicit example.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

In mathematics, more specifically in functional analysis, a positive linear operator from an preordered vector space into a preordered vector space is a linear operator on into such that for all positive elements of that is it holds that In other words, a positive linear operator maps the positive cone of the domain into the positive cone of the codomain.

This is a glossary for the terminology in a mathematical field of functional analysis.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References