Burkholderia thailandensis

Last updated

Burkholderia thailandensis
Burkholderia thailandensis (3444954404).jpg
Burkholderia thailandensis on Ashdown's media
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Species:
B. thailandensis
Binomial name
Burkholderia thailandensis
Brett et al. 1998 [1]

Burkholderia thailandensis is a nonfermenting motile, Gram-negative bacillus that occurs naturally in soil. It is closely related to Burkholderia pseudomallei, but unlike B. pseudomallei, it only rarely causes disease in humans or animals. [2] [3] [4] [5] The lethal inoculum is approximately 1000 times higher than for B. pseudomallei. [6] It is usually distinguished from B. pseudomallei by its ability to assimilate arabinose. [7] Other differences between these species include lipopolysaccharide composition, colony morphology, and differences in metabolism. [8]

Contents

Use in research

Burkholderia thailandensis is sometimes used to model B. pseudomallei infection in mice because of similarities in the immune response. [9] [10] [11] B. thailandensis does not require biosafety category 3 facilities and is not considered a biosecurity threat, which makes it easier to study and to work with. [12] Burkholderia thailandensis has secondary products that play an essential role in the ecology of soil bacteria. [13] Co-culture studies showed that B. thailandensis strain E264 produces an antimicrobial substance that prevents the growth of other soil bacteria called Bacillus subtilis strain 168.

Small RNA

Research suggests that as in other bacteria, small non coding RNAs play a role in response to the environmental and stress conditions like antibiotic exposure and survival in a host-specific environment. [14] Several small RNA have been discovered in B. thailandenisis: BHT_s1 and BHT_s39 exhibit differential expression profiles dependent on growth phase and cell stimuli, such as antibiotics and serum. BHT_s39 could function in bacterial metabolism and adaptation to host. BTH_s13 and BTH_s19 may regulate expression of their downstream gene. [14]

Related Research Articles

Melioidosis Human disease

Melioidosis is an infectious disease caused by a Gram-negative bacterium called Burkholderia pseudomallei. Most people infected with B. pseudomallei experience no symptoms, but those who do experience symptoms have signs and symptoms that range from mild, such as fever, skin changes, pneumonia, and abscesses, to severe with inflammation of the brain, inflammation of the joints, and dangerously low blood pressure that causes death. About 10% of people with melioidosis develop symptoms that last longer than two months, termed "chronic melioidosis".

<i>Burkholderia</i> Genus of bacteria

Burkholderia is a genus of Proteobacteria whose pathogenic members include the Burkholderia cepacia complex, which attacks humans and Burkholderia mallei, responsible for glanders, a disease that occurs mostly in horses and related animals; Burkholderia pseudomallei, causative agent of melioidosis; and Burkholderia cepacia, an important pathogen of pulmonary infections in people with cystic fibrosis (CF). Burkholderia species is also found marine environment. S.I. Paul et al. (2021) isolated and characterized Burkholderia cepacia from marine sponges of the Saint Martin's Island of the Bay of Bengal, Bangladesh.

<i>Leptospira</i> Genus of bacteria

Leptospira is a genus of spirochaete bacteria, including a small number of pathogenic and saprophytic species. Leptospira was first observed in 1907 in kidney tissue slices of a leptospirosis victim who was described as having died of "yellow fever".

Pertussis toxin

Pertussis toxin (PT) is a protein-based AB5-type exotoxin produced by the bacterium Bordetella pertussis, which causes whooping cough. PT is involved in the colonization of the respiratory tract and the establishment of infection. Research suggests PT may have a therapeutic role in treating a number of common human ailments, including hypertension, viral infection, and autoimmunity.

<i>Burkholderia pseudomallei</i> Species of bacterium

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. It infects humans and other animals and causes the disease melioidosis. It is also capable of infecting plants.

<i>Burkholderia mallei</i> Species of bacterium

Burkholderia mallei is a Gram-negative, bipolar, aerobic bacterium, a human and animal pathogen of genus Burkholderia causing glanders; the Latin name of this disease (malleus) gave its name to the species causing it. It is closely related to B. pseudomallei, and by multilocus sequence typing it is a subspecies of B. pseudomallei.B. mallei evolved from B. pseudomallei by selective reduction and deletions from the B. pseudomallei genome. Unlike B. pseudomallei and other genus members, B. mallei is nonmotile; its shape is coccobacillary measuring some 1.5–3.0 μm in length and 0.5–1.0 μm in diameter with rounded ends.

<i>Yersinia pseudotuberculosis</i> Species of bacterium

Yersinia pseudotuberculosis is a Gram-negative bacterium that causes Far East scarlet-like fever in humans, who occasionally get infected zoonotically, most often through the food-borne route. Animals are also infected by Y. pseudotuberculosis. The bacterium is urease positive.

Chlamydia muridarum is an intracellular bacterial species that at one time belonged to Chlamydia trachomatis. However, C. trachomatis naturally only infects humans and C. muridarum naturally infects only members of the family Muridae.

<i>Chromobacterium violaceum</i> Species of bacterium

Chromobacterium violaceum is a Gram-negative, facultative anaerobic, non-sporing coccobacillus. It is motile with the help of a single flagellum which is located at the pole of the coccobacillus. Usually, there are one or two more lateral flagella as well. It is part of the normal flora of water and soil of tropical and sub-tropical regions of the world. It produces a natural antibiotic called violacein, which may be useful for the treatment of colon and other cancers. It grows readily on nutrient agar, producing distinctive smooth low convex colonies with a dark violet metallic sheen. Some strains of the bacteria which do not produce this pigment have also been reported. It has the ability to break down tarballs.

Mycolactone Chemical compound

Mycolactone is a polyketide-derived macrolide produced and secreted by a group of very closely related pathogenic Mycobacteria species that have been assigned a variety of names including, M. ulcerans, M. liflandii, M. pseudoshottsii, and some strains of M. marinum. These mycobacteria are collectively referred to as mycolactone-producing mycobacteria or MPM.

<i>Sporothrix schenckii</i> Species of fungus

Sporothrix schenckii, a fungus that can be found worldwide in the environment, is named for medical student Benjamin Schenck who in 1896 was the first to isolate it from a human specimen. The species is present in soil as well as in and on living and decomposing plant material such as peat moss. It can infect humans as well as animals and is the causative agent of sporotrichosis, commonly known as "rose handler's disease." The most common route of infection is the introduction of spores to the body through a cut or puncture wound in the skin. Infection commonly occurs in otherwise healthy individuals but is rarely life-threatening and can be treated with antifungals. In the environment it is found growing as filamentous hyphae. In host tissue it is found as a yeast. The transition between the hyphal and yeast forms is temperature dependent making S. schenckii a thermally dimorphic fungus.

Lyme disease microbiology

Lyme disease, or borreliosis, is caused by spirochetal bacteria from the genus Borrelia, which has 52 known species. Three main species are the main causative agents of the disease in humans, while a number of others have been implicated as possibly pathogenic. Borrelia species in the species complex known to cause Lyme disease are collectively called Borrelia burgdorferisensu lato (s.l.) not to be confused with the single species in that complex Borrelia burgdorferi sensu stricto which is responsible for nearly all cases of Lyme disease in North America.

Burkholderia multivorans is a species in the phylum proteobacteria. The cells are rod-shaped. It is known to cause human disease, such as colonisation of the lung in cystic fibrosis.

Ashdowns medium

Ashdown's medium is a selective culture medium for the isolation and characterisation of Burkholderia pseudomallei.

Fibronectin binding protein A (FnBPA) is a Staphylococcus aureus MSCRAMM cell surface-bound protein that binds to both fibronectin and fibrinogen.

The Sereny test is a test used to test the invasiveness of enteroinvasive Escherichia coli, Shigella species, and Listeria monocytogenes.

CAMP test

The CAMP test (Christie–Atkins–Munch-Peterson) is a test to identify group B β-hemolytic streptococci based on their formation of a substance that enlarges the area of hemolysis formed by the β-hemolysin elaborated from Staphylococcus aureus.

AB toxin

The AB toxins are two-component protein complexes secreted by a number of pathogenic bacteria. They can be classified as Type III toxins because they interfere with internal cell function. They are named AB toxins due to their components: the "A" component is usually the "active" portion, and the "B" component is usually the "binding" portion. The "A" subunit possesses enzyme activity, and is transferred to the host cell following a conformational change in the membrane-bound transport "B" subunit. These proteins consist of two independent polypeptides, which correspond to the A/B subunit moieties. The enzyme component (A) enters the cell through endosomes produced by the oligomeric binding/translocation protein (B), and prevents actin polymerisation through ADP-ribosylation of monomeric G-actin.

Vibrio regulatory RNA of OmpA

VrrA is a non-coding RNA that is conserved across all Vibrio species of bacteria and acts as a repressor for the synthesis of the outer membrane protein OmpA. This non-coding RNA was initially identified from Tn5 transposon mutant libraries of Vibrio cholerae and its location within the bacterial genome was mapped to the intergenic region between genes VC1741 and VC1743 by RACE analysis.

Paracytophagy is the cellular process whereby a cell engulfs a protrusion which extends from a neighboring cell. This protrusion may contain material which is actively transferred between the cells. The process of paracytophagy was first described as a crucial step during cell-to-cell spread of the intracellular bacterial pathogen Listeria monocytogenes, and is also commonly observed in Shigella flexneri. Paracytophagy allows these intracellular pathogens to spread directly from cell to cell, thus escaping immune detection and destruction. Studies of this process have contributed significantly to our understanding of the role of the actin cytoskeleton in eukaryotic cells.

References

  1. Brett PJ, DeShazer D, Woods DE (1998). "Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species". Int J Syst Bacteriol. 48: 317–320. doi: 10.1099/00207713-48-1-317 . PMID   9542103.
  2. Wuthiekanun V, Smith MD, Dance DA, Walsh AL, Pitt TL, White NJ (1996). "Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei". J Med Microbiol. 45 (6): 408–12. doi: 10.1099/00222615-45-6-408 . PMID   8958243.
  3. Smith MD, Angus BJ, Wuthiekanun V, White NJ (1997). "Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei". Infect Immun. 65 (10): 4319–21. doi:10.1128/IAI.65.10.4319-4321.1997. PMC   175618 . PMID   9317042.
  4. Lertpatanasuwan N, Sermsri K, Petkaseam A, Trakulsomboon S, Thamlikitkul V, Suputtamongkol Y (1999). "Arabinose-positive Burkholderia pseudomallei infection in humans: case report". Clin Infect Dis. 28 (4): 927–28. doi: 10.1086/517253 . PMID   10825075.
  5. Glass MB, Gee JE, Steigerwalt AG, et al. (2006). "Pneumonia and Septicemia Caused by Burkholderia thailandensis in the United States". J Clin Microbiol. 44 (12): 4601–04. doi:10.1128/JCM.01585-06. PMC   1698378 . PMID   17050819.
  6. Wiersinga WJ, de Vos AF, de Beer R, et al. (2007). "Inflammation patterns induced by different Burkholderia species in mice". Cell Microbiol. 10 (1): 81–87. doi:10.1111/j.1462-5822.2007.01016.x. PMID   17645551. S2CID   22030395.
  7. Smith MD, Angus BJ, Wuthiekanun V, White NJ (1997). "Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei". Infect Immun. 65 (10): 4319–321. doi:10.1128/IAI.65.10.4319-4321.1997. PMC   175618 . PMID   9317042.
  8. Woods DE (1999). "Species versus Biotype Status". J Clin Microbiol. 37 (11): 3786–7. PMC   85768 . PMID   10610379.
  9. Wiersinga WJ, de Vos AF, de Beer R, Wieland CW, Roelofs JJTH, Woods DE (2008). "Inflammation patterns induced by different Burkholderia species in mice". Cell Microbiol. 10 (1): 81–7. doi:10.1111/j.1462-5822.2007.01016.x. PMID   17645551. S2CID   22030395.
  10. Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008). "Burkholderia thailandensis as a model system for the Study of the virulence-associated type III secretion system of Burkholderia pseudomallei". Infect Immun. 76 (11): 5402–11. doi:10.1128/IAI.00626-08. PMC   2573339 . PMID   18779342.
  11. Morici LA, Heang J, Tate T, Didier PJ, Roy CJ (2010). "Differential susceptibility of inbred mouse strains to Burkholderia thailandensis aerosol infection". Microb Pathog. 48 (1): 9–17. doi:10.1016/j.micpath.2009.10.004. PMC   7006035 . PMID   19853031.
  12. Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008). "Burkholderia thailandensis as a Model System for the Study of the Virulence-Associated Type III Secretion System of Burkholderia pseudomallei". Infect Immun. 76 (11): 5402–11. doi:10.1128/IAI.00626-08. PMC   2573339 . PMID   18779342.
  13. Klaus, J. R., Majerczyk, C., Moon, S., Eppler, N. A., Smith, S., Tuma, E., Groleau, M.C., Asfahl, K. L., & Smalley, N. E., Nicole, E., Hayden, H. S., Piochon, M., Ball, P., Dandekar, A. A., Gauthier, C., Deziel, E., Chandler, J. R. (2020). Burkholderia thailandensis methylated hydroxyalkylquinolines: Biosynthesis and antimicrobial activity in cocultures. Applied and Environmental Microbiology, 86(24), 1-17. https://doi.org/10.1128/AEM.01452-20
  14. 1 2 Stubben, Chris J.; Micheva-Viteva, Sofiya N.; Shou, Yulin; Buddenborg, Sarah K.; Dunbar, John M.; Hong-Geller, Elizabeth (2014-05-19). "Differential expression of small RNAs from Burkholderia thailandensis in response to varying environmental and stress conditions". BMC Genomics. 15: 385. doi:10.1186/1471-2164-15-385. ISSN   1471-2164. PMC   4035088 . PMID   24884623.