Chemical sensor array

Last updated

A chemical sensor array is a sensor architecture with multiple sensor components that create a pattern for analyte detection from the additive responses of individual sensor components. There exist several types of chemical sensor arrays including electronic, optical, acoustic wave, and potentiometric devices. These chemical sensor arrays can employ multiple sensor types that are cross-reactive or tuned to sense specific analytes. [1] [2] [3] [4]

Contents

Overview

Definition

Sensor array components are individual sensors, which are selected based on their individual sensing properties (ie. method of detection, specificity for a particular class of analyte and molecular interaction). Sensor components are chosen to respond to as many analytes as possible; so, while the sensitivity and selectivity of individual sensor components vary, the sensors have an additive effect by creating a nonselective fingerprint for a particular analyte when combined into an array architecture. [1] Recognition of fingerprints enables detection of analytes in mixtures. [1] [2] Chemical sensor arrays differ from other multianalyte tests such as a urinalysis stick assay which utilizes multiple, specific sensor materials for targeted detection of analytes in a mixture; [1] instead, chemical sensor arrays rely on cross-reactivity of individual sensor components to generate fingerprints based on the additive responses of sensor components to the target analyte. [1] [2] [5] [3]

Comparison to other chemical sensors

Single sensor devices sense target analytes based on physical, optical, and electronic properties. Some sensors contain specific molecular targets to afford strong and specific binding with a particular analyte; however, while this approach is specific, complex mixture impact sensor performance. Several of these complex mixtures include odors and vapors exhaled from the lungs. [1] Individual chemical sensors often utilize controlled sensing environments, and variations in ambient conditions (e.g., temperature and humidity) can interfere with sensor performance. [2] [5] Chemical sensor arrays employ pattern recognition of combinatorial responses of cross-reactive sensor components to enable sensing of a diverse array of mixtures in a variety of conditions. [1] [2] [5] [3] Chemical sensor arrays are often noted as mimicking the five senses—audition, gustation, olfaction, somatosensation, and vision—because the combinatorial responses to the different array components of a particular analytes create fingerprints for specific analytes or mixtures using both targeted molecular interactions and pattern recognition. [3] [4]

History

The history of chemical sensor arrays is closely linked with the development of other chemical sensor technologies, with research in the area of electronic chemical sensors picking up in the 1960s with the demonstration of metal-oxide semiconductor sensors capable of sensing analyses such as oxygen. [6] Humans are capable of identifying and discerning between an estimated 10,000 scents or more, while only possessing 400 olfactory receptors. [3] Signal processing in the brain of individual array component responses of olfactory receptors results in pattern recognition for discrimination of a particular scent. [3] One of the design aims of many chemical sensor arrays is to mimic the performance of olfaction to design an electronic nose integrated with a variety of materials. [7] Combining chemical sensor arrays with pattern recognition methods mimics biological sensory recognition methods. [8] See Figure 1. Commercially available electronic nose systems exist and are used in the food industry for quality control. Current research efforts demonstrate the introduction of the electronic nose principle into environmental monitoring and medicine both as commercial instruments as well as in consumer-grade wearable electronic devices. [9] At the center of chemical sensor arrays is the principle that different analytes will interact differently with a variety of materials. As such, any sort of material may be used in a sensor array, so long as it responds differently to different analytes or mixtures. From this idea, cross-reactive sensor arrays have been the focus of chemical sensor array development for their broad compatibility with the compounds as components of mixtures. [1]

Figure 1. The design and inspiration for many chemical sensor arrays is one or more of the five senses such as smell or taste. As depicted here, the process by which sensor array data is utilized may be broken down into similar steps as odor biological odor detection: 1. acquiring a signal, 2. processing the signal, 3. comparing the signal to what is already known, and 4. producing a response. Electronic Nose Principles.png
Figure 1. The design and inspiration for many chemical sensor arrays is one or more of the five senses such as smell or taste. As depicted here, the process by which sensor array data is utilized may be broken down into similar steps as odor biological odor detection: 1. acquiring a signal, 2. processing the signal, 3. comparing the signal to what is already known, and 4. producing a response.

Array signal processing

The signal(s) coming from an array sensor must be processed and compared with already-known patterns. Many techniques are useful in processing array data including principal component analysis (PCA), least square analysis, and more recently training of neural networks and utilization of machine learning for pattern development and identification. [1] [4] Machine learning has been a more recent development for generation and recognition of patterns for chemical sensor array data. [10] [11] [12] The method of data analysis chosen depends on a variety of factors including sensing parameters, desired use of the information (quantitative or qualitative), and the method of detection which can be classified under four major types of chemical sensor array: electronic, optical, acoustic wave, and electrochemical sensor arrays. [1] [2] [5]

Electronic chemical sensor arrays

The first type of chemical sensor array relies on modulation of an electronic signal for signal acquisition. This type of chemical sensor array often utilizes a semiconductive material such as metal-oxide semiconductors, conductive polymers, nanomaterials, or framework materials such as metal-organic and covalent-organic frameworks. [1] One of the simplest device architectures for an electronic chemical sensor is a chemiresistor, and other architectures include capacitors and transistors; these materials have a resistance which can be altered through physisorption or chemisorption of target molecules and thus a measurable signal as a change in electrical current, capacitance, or voltage. [1]

Metal-oxide semiconductors in electronic chemical sensor arrays

Metal-oxide semiconductors were first reported in the 1960s as a chemiresistor sensor for single-analyte detection of organic vapors. [1] The first commercially available chemiresistive sensors utilized metal-oxide semiconductors for the detection of carbon monoxide. [1] [12] Although most known for their use in carbon monoxide detectors, metal-oxide semiconductors are capable of sensing other analytes through strategic tuning of their composition. [12] The high operating temperature required to operate these sensors make these semiconductors inefficient and cross-reactive particularly with water. [1] [5]

In the 1990s, several researchers at the University of Warwick created the first cross-reactive (non-selective) metal-oxide semiconductor sensor array integrated with pattern recognition software for sensing and distinguishing organic vapors, including acetone, ethanol, methanol, and xylene, in multianalyte mixtures. [1] [12] This electronic nose system was known as the Warwick Nose, and combined commercially available tin- and silicon-oxide semiconductors into an array format for gas sensing, see Figure 2. [13] Current efforts are advancing the format of metal-oxide semiconductor arrays using microfabrication techniques to enable smaller array designs and integration of signal processing components into each array component. These microdevices have shown promise with lowered limits of detection and enhanced ability to distinguish volatile organic compounds and carbon monoxide with arrays containing different numbers of device, and these systems also reduce the amount of sensor material with thin films of metal-oxides. [14] Sensitivity of sensors has also been shown to be influenced by changing the ratio of the metal within each device and data processing utilized least square analysis. [12]

Another example of metal-oxide semiconductors is arrays of metal-oxide semiconductor field effect transistors (MOSFET), which consist of a catalytically active gate metal (such as palladium) over a silicon dioxide layer on a p-type silicon base with n-doped channels adjacent to the gate, and they have been used to sense hydrogen, ammonia, and ethanol. [1] These MOSFETs through adsorbed-analyte modulating the semiconductor gate work function, which causes changes in voltage across the device. [1] MOSFETs are highly tunable but remain limited by their cross-reactivity, and high operating temperatures. [2]

Intrinsically conductive polymers in electronic chemical sensor arrays

Several intrinsically conductive polymers of interest include polyacetylene, polythiophene, and polyaniline, and others may be made conductive through processes including chemical doping. [1] [2] The principle chemistry underlying the electronic sensing mechanism of conductive polymers is modulation of the conductivity of these polymers upon changes to their physical structure (swelling) resulting from interactions with analytes (mainly through absorption). [1] An advantage of using conductive polymers in sensor arrays is that there is synthetic access of a vast library of polymers. As a result, conductive polymers are a promising alternative to metal-oxide semiconductors because a greater number of sensors with different functionalities may be used to design a more robust array tailored for specific applications. Monomer identity, polymerization conditions, and device fabrication methods impact both the morphological and chemical properties of conductive polymers, which also contributes to the greater variety of possible array components which may be designed. [1] [2] [8] The limitations of conductive polymer arrays are similar to those of single sensor analogs in that the signal transduction pathways through the polymer material are poorly understood and both struggle to sense non-polar species due to minimal adsorption to the polymer. [1] Several commercially available systems are available and are used in food analysis and sensing of volatile organic compounds; however, progress to advance chemiresistive sensor arrays utilizing conductive polymers has decreased as other materials and sensing methods have been developed. [1]

Nanomaterials in electronic chemical sensor arrays

Development of novel nanomaterials such as graphene, carbon nanotubes, and 2D and 3D framework materials have been reported as new classes of materials for applications in electronic chemical sensor arrays. For graphene and carbon nanotubes, surface functionalization via covalent or non-covalent modification, and edge site defects are utilized as sites for host-guest interactions. One such example is single-walled carbon nanotubes modified with various metalloporphyrins to enable discrimination of volatile organic compounds. [15] [16]

Conductive framework materials in electronic chemical sensor arrays

Conductive framework materials have similar mechanisms for sensing; however these materials may be designed with installed active sites tuned for a specific molecular interaction. [17] Bimetallic metallophthalocyanine metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have shown promise in single device chemiresistors at sensing hydrogen sulfide, ammonia, and nitric oxide. [18] [19] The development of these materials as chemiresistors allows for strategic design of arrays capable of targeted molecular interactions, which can be employed to develop array components tailored to sensing specific compounds. Computational research of several MOFs has also focused on optimizing which combinations of MOFs are best suited for sensing particular components in various mixtures. [20] The focus on curation of framework array components demonstrated the opportunity to design robust sensor arrays experimentally and computationally. [21] [22]

Mixed-material electronic chemical sensor arrays

Efforts have been made to overcome the specific limitations of different classes of materials suited for use in electronic chemical sensor arrays by combining sensors fabricated with different materials into one array. [1] One example of these is metal-oxide nanowires coated in thin films of MOFs, which have been reported to have enhanced sensing performance over sensors made with the individual materials. [23] Carbon black-polymer blends have also shown enhanced analyte discrimination and array-element signals to afford enhanced detection of volatile organic compounds both across a variety of classes, as well as within the same class. [24] [25]

Molecularly imprinted polymers have also been integrated into array formats and shown utility as the imprinting process enables molecularly imprinted polymer arrays to be tailors to specific analytes. [26]

Optical/colorimetric chemical sensor arrays

Figure 2. Overview of the principles underlying colorimetric and fluorometric sensor arrays. 1. Array of several colorimetric and/or fluorometric sensors constructed. 2-3. Exposure of the array to particular analytes allows fingerprint identification of components. 4. Multicomponent analysis of a mixture may be achieved with pattern recognition of known fingerprints. This process if another generalization of Figure 1. Adapted from Figure created by Askim and coauthors. Colorimetric Sensor Array Principles.png
Figure 2. Overview of the principles underlying colorimetric and fluorometric sensor arrays. 1. Array of several colorimetric and/or fluorometric sensors constructed. 2-3. Exposure of the array to particular analytes allows fingerprint identification of components. 4. Multicomponent analysis of a mixture may be achieved with pattern recognition of known fingerprints. This process if another generalization of Figure 1. Adapted from Figure created by Askim and coauthors.

Separate from electronic chemical sensor arrays are optical chemical sensor arrays which probe chemical interactions between target analytes and a sensing material with light (ultraviolet, visible, infrared). Generally, optical sensors probe chemical interactions with light through a variety of quantifiable methods including absorbance, diffraction, fluorescence, refraction, and scattering. [3] [4] Generally, fluorescence sensors show greater sensitivity than other optical methods. [3] Optical sensors consist of a light source, wavelength filter(s), a sample, and a detector, with variations in sensor design based on the method used. [3] Similar to the electronic nose, optical chemical sensor arrays have been categorized under the umbrella topic of optoelectronic nose and similarly operate by developing fingerprints for specific compounds and using pattern recognition to identify those components in mixture. Figure 2. shows the principles underlying colorimetric and fluorometric sensor arrays. Chemical interactions with dyes result in changes to light being detected in an optical sensor.

Optical sensors require selective interaction with analytes and two components are required: a probe material, and a chromo- or fluorophore. [3] [4] Cross-reactive optical and fluorescence arrays require strategic consideration of molecular interactions between probes and analytes. Much like electrical chemical sensor arrays, optical chemical sensor arrays face challenges in sensing in the presence of competing analytes such as water. [1] [2] [3] Consideration of host-guest interactions allows an array to probe a variety of molecular features  because integration of ‘promiscuous sensors’ (non-selective) such as optically active polymers permit non-discriminate sensing of a variety of compounds primarily based on hydrophobicity, and so-called ‘monogamous’ sensors with exclusive binding to a particular analyte (much like a lock-and-key design)  will enhance specificity and applicability of a colorimetric sensor array. Regardless of the type of sensing probe, there are five major types of intermolecular interaction which lead to a measurable colorimetric change to a material. [3]

Brønsted-Lowry acid-base interactions in colorimetric chemical sensor arrays

Brønsted-Lowry acid-base interactions such as those of dyes commonly used as pH indicators are one of the earliest methods for colorimetric sensing. Since the early 20th century, natural dyes such as 7-hydroxyohenoxazone (litmus) and anthocyanin oxonium dye have been used both as pH indicators and colorimetric sensors. [4] Many other chromophores with Brønsted-Lowry acid-base functionality have been developed such azo dyes, nitrophenols, phthaleins, and sulfonphthaleins. [4] The Brønsted-Lowry acid-base functionality of these chromophores relates to specific chemical moieties within their structures and their corresponding pKa. Color changes resulting from protonation/deprotonation events may be broadly defined as intermolecular interactions with an acid or base of a particular strength and/or concentration. [3] [4]

Lewis acid-base interactions in colorimetric chemical sensor arrays

While Brønsted-Lowry acid-base interactions are sensitive to a broad range of compounds, Lewis acid and base interactions comprise some of the most sensitive set of intermolecular interactions relevant to colorimetric chemical sensor arrays. [3] The selectivity of Lewis acid and base interactions in chemical sensing are underscored by the fact that the most pungent of odors arise from Lewis bases (thiols, phosphines, amines) and the metal cation-containing olfactory receptors utilized to sense them at some of the lowest concentrations of all molecular motifs in biology use Lewis acid receptors. [3] Lewis acid dyes (namely metals cations with an open-coordination site) are used in biological olfaction for sensing. [4] As such, Lewis acids such as metalloporphyrins are of particular interest to researchers developing colorimetric sensor because of their strong Lewis acid-base interactions. [4]

Figure 3. The Handheld Electronic Nose (HEN) employs a chemical sensor array to assess tea fermentation to enable optimization of tea preparation and quality. CDAC Handheld Electronics Nose - Kolkata 2018-04-23 0299.JPG
Figure 3. The Handheld Electronic Nose (HEN) employs a chemical sensor array to assess tea fermentation to enable optimization of tea preparation and quality.

Other interactions in colorimetric chemical sensor arrays

File:Cyranose 320 Labelled.jpg

Figure 4. Diagram of Cyranose 320 electronic nose employing an array of 32 black carbon-polymer for detection of eye infection causing bacteria. Image provided by Cyranose Sciences Inc. Cyranose 320 Labelled.jpg
Figure 4. Diagram of Cyranose 320 electronic nose employing an array of 32 black carbon-polymer for detection of eye infection causing bacteria. Image provided by Cyranose Sciences Inc.

A variety of other reversible molecular interactions have been shown to produce color changes upon interaction with analytes. These include redox active chromo- and fluorophores which undergo specific color changes at different applied potentials. [3] [4] There also exists a variety of dyes such as merocyanine and azobenzene which show color changes based on the polarity of their environment. [3] A‘push-pull’mechanism of electron density through these systems through intermolecular interactions results in augmentation of their dipole moments between ground and excited states, which manifests as observable changes to optical transition. [4] Nanomaterials development has allowed for surface modification of certain dyes (especially redox active dyes) to afford high sensitivity due to larger surface area-to-volume ratio resulting for more active sites for analyte interaction with dyes. [28]

Colorimetric chemical sensor array fabrication

Unlike the materials used in electronic chemical sensor arrays, in which direct interaction between the sensing material and an analyte leads to signal transduction as a change in conductivity or voltage, fabrication of colorimetric sensor arrays requires consideration of both analyte-substrate interaction and transduction of the optical signal. [29] One method for colorimetric sensor array fabrication involves preparation of microspheres by suspending dyes into an inert, and transparent matrix. These microspheres are then incorporated into fiber optics. [3] Other methods for fabricating colorimetric sensor arrays include printing of array fluor- and colorimetric dyes (either directly or in a nanoporous matrix) onto various substrates including paper, silica gel, or porous polymer membranes. [3]

Inclusion of digital imaging and or illumination of optical chemical sensor array elements allows for rapid, real-time signal transduction of colorimetric data measurements in real-time of colorimetric and fluorescent data from microsphere or plated sensors. [3] [28] Detectors can process specific wavelengths of light, or employ RGB image processing programs to analyze data obtained from direct imaging of a sensor array. [3] Much like electronic chemical sensor arrays, optical chemical sensor arrays are being miniaturized using microfabrication techniques to increase the applicability. Recent advancements in optical chemical sensor arrays have resulted in sensor arrays being directly integrated into flatbed scanners and mobile electronics such as smart phones (through microplate fabrication). [3] These microplate arrays enable colorimetric analysis of complex mixtures in a variety of phases with applications in identification of toxic industrial chemicals using cross-reactive nanoporous pigments, [30] cancer diagnosis using an array of gold nanoparticle-green fluorescent proteins, [31] and development and assessment of combinatorial libraries of metal-dye complexes as sensors themselves. [32]

Other types of chemical sensor arrays

Although less common, there are two other classifications of devices with demonstrated functionality as chemical sensor arrays. These include wave devices and electrochemical sensors.

Wave devices as chemical sensor arrays

There are several major types of wave devices including acoustic wave devices, thickness shear mode resonators (TSM), and quartz crystal microbalances. These devices oscillate at known frequencies and their frequencies of oscillation are modulated by changes in the mass of the device. These devices may be modified with the plurality of the materials already discussed as being useful materials in chemical sensor array. [1] All of these materials are marked by the broad compatibility of their intermolecular interactions as well as selective interactions to a variety of compounds, which when combined together allow for fingerprint detection of compounds in mixtures. [1]

Modification of wave devices with materials such as micromachined metal-oxide cantilevers coated in polymer films enable enhanced detection of mixtures of volatile organic compounds as well as hydrogen gas and mercury vapor. [33] [34] Bulk and surface acoustic wave devices have used in higher order sensors in which the sensing material gives rise to multiple modes for signal transduction, such as electrical and optical; additionally the same wave devices have also been used to create virtual chemical sensor arrays, in which data from one sensor component is further processed. [35] A chemical sensor array of surface-modified quartz crystal microbalances with a variety of materials including copper phthalocyanine, single- and multi-walled carbon nanotubes was shown as a promising electronic nose for gas sensing when machine learning algorithms were employed for data processing. [36]

Electrochemical sensor arrays

Another class of devices usable in chemical sensor arrays are electrodes. Commonly, electrochemical-based sensors are referred to as electronic tongues. [37] Surface modification of an electrode in a multielectrode system allows for targeting of specific molecular interactions. [37] Semipermeable membrane materials allows for electrodes to be made into sensors through their ability to selectively oxidize or reduce target analytes. [1] One example includes, the use of an array of semipermeable membrane sensors made from potentiometric polymers like poly(vinyl chloride) have demonstrated their ability to monitor nitrate, nitrite, and ammonium concentrations in aqueous solution. [38] Both voltametric and potentiometric methods have been developed, and this technique is an active area of research not only for multianalyte analysis of aqueous solutions such as cerebrospinal fluid, but also differentiation of redox products in electrochemical reactions. [26] [37]

Examples of chemical sensor arrays with real-world uses

There exists a diversity of well-understood, and emerging research focused on developing chemical sensor arrays for a variety of applications. Analytical devices integrated with a chemical sensor array have been proposed as diagnostic tests for cancer, bacterial infections [39] based on fingerprint analysis of exhaled breath, as well as for food and product quality control. [40] A few examples include:

Related Research Articles

<span class="mw-page-title-main">Sensor</span> Converter that measures a physical quantity and converts it into a signal

A sensor is a device that produces an output signal for the purpose of detecting a physical phenomenon.

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts with, binds with, or recognizes the analyte under study. The biologically sensitive elements can also be created by biological engineering. The transducer or the detector element, which transforms one signal into another one, works in a physicochemical way: optical, piezoelectric, electrochemical, electrochemiluminescence etc., resulting from the interaction of the analyte with the biological element, to easily measure and quantify. The biosensor reader device connects with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way. This sometimes accounts for the most expensive part of the sensor device, however it is possible to generate a user friendly display that includes transducer and sensitive element. The readers are usually custom-designed and manufactured to suit the different working principles of biosensors.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

<span class="mw-page-title-main">Polypyrrole</span>

Polypyrrole (PPy) is an organic polymer obtained by oxidative polymerization of pyrrole. It is a solid with the formula H(C4H2NH)nH. It is an intrinsically conducting polymer, used in electronics, optical, biological and medical fields.

<span class="mw-page-title-main">Hydrogen sensor</span> Gas Detector

A hydrogen sensor is a gas detector that detects the presence of hydrogen. They contain micro-fabricated point-contact hydrogen sensors and are used to locate hydrogen leaks. They are considered low-cost, compact, durable, and easy to maintain as compared to conventional gas detecting instruments.

<span class="mw-page-title-main">Printed electronics</span> Electronic devices created by various printing methods

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic-industry standards, these are low-cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Some researchers expect printed electronics to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

<span class="mw-page-title-main">Electronic nose</span> Electronic sensor for odor detection

An electronic nose is an electronic sensing device intended to detect odors or flavors. The expression "electronic sensing" refers to the capability of reproducing human senses using sensor arrays and pattern recognition systems.

<span class="mw-page-title-main">Molecular sensor</span>

A molecular sensor or chemosensor is a molecular structure that is used for sensing of an analyte to produce a detectable change or a signal. The action of a chemosensor, relies on an interaction occurring at the molecular level, usually involves the continuous monitoring of the activity of a chemical species in a given matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc. The application of chemosensors is referred to as chemosensing, which is a form of molecular recognition. All chemosensors are designed to contain a signalling moiety and a recognition moiety, that is connected either directly to each other or through a some kind of connector or a spacer. The signalling is often optically based electromagnetic radiation, giving rise to changes in either the ultraviolet and visible absorption or the emission properties of the sensors. Chemosensors may also be electrochemically based. Small molecule sensors are related to chemosensors. These are traditionally, however, considered as being structurally simple molecules and reflect the need to form chelating molecules for complexing ions in analytical chemistry. Chemosensors are synthetic analogues of biosensors, the difference being that biosensors incorporate biological receptors such as antibodies, aptamers or large biopolymers.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

<span class="mw-page-title-main">Transparent conducting film</span> Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

<span class="mw-page-title-main">Kenneth S. Suslick</span>

Kenneth S. Suslick is the Marvin T. Schmidt Professor of Chemistry Emeritus at the University of Illinois at Urbana–Champaign. His area of focus is on the chemical and physical effects of ultrasound, sonochemistry, and sonoluminescence. In addition, he has worked in the fields of artificial and machine olfaction, electronic nose technology, chemical sensor arrays, and the use of colorimetric sensor arrays as an optoelectronic nose.

<span class="mw-page-title-main">Two-dimensional polymer</span>

A two-dimensional polymer (2DP) is a sheet-like monomolecular macromolecule consisting of laterally connected repeat units with end groups along all edges. This recent definition of 2DP is based on Hermann Staudinger's polymer concept from the 1920s. According to this, covalent long chain molecules ("Makromoleküle") do exist and are composed of a sequence of linearly connected repeat units and end groups at both termini.

A biotransducer is the recognition-transduction component of a biosensor system. It consists of two intimately coupled parts; a bio-recognition layer and a physicochemical transducer, which acting together converts a biochemical signal to an electronic or optical signal. The bio-recognition layer typically contains an enzyme or another binding protein such as antibody. However, oligonucleotide sequences, sub-cellular fragments such as organelles and receptor carrying fragments, single whole cells, small numbers of cells on synthetic scaffolds, or thin slices of animal or plant tissues, may also comprise the bio-recognition layer. It gives the biosensor selectivity and specificity. The physicochemical transducer is typically in intimate and controlled contact with the recognition layer. As a result of the presence and biochemical action of the analyte, a physico-chemical change is produced within the biorecognition layer that is measured by the physicochemical transducer producing a signal that is proportionate to the concentration of the analyte. The physicochemical transducer may be electrochemical, optical, electronic, gravimetric, pyroelectric or piezoelectric. Based on the type of biotransducer, biosensors can be classified as shown to the right.

<span class="mw-page-title-main">Chemiresistor</span> Material with changing electrical resistance according to its surroundings

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: semiconducting metal oxides, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

<span class="mw-page-title-main">Bio-FET</span> Type of field-effect transistor

A field-effect transistor-based biosensor, also known as a biosensor field-effect transistor, field-effect biosensor (FEB), or biosensor MOSFET, is a field-effect transistor that is gated by changes in the surface potential induced by the binding of molecules. When charged molecules, such as biomolecules, bind to the FET gate, which is usually a dielectric material, they can change the charge distribution of the underlying semiconductor material resulting in a change in conductance of the FET channel. A Bio-FET consists of two main compartments: one is the biological recognition element and the other is the field-effect transistor. The BioFET structure is largely based on the ion-sensitive field-effect transistor (ISFET), a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution, and reference electrode.

Optical air sensors center around the detection of some form of light created by a chemical process, in order to identify or measure amounts of individual molecules. Portable sensors are specifically sensors that are easy to transport and use in the field.

Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.

<span class="mw-page-title-main">Conductive metal−organic frameworks</span>

Conductive metal−organic frameworks are a class of metal–organic frameworks with intrinsic ability of electronic conduction. Metal ions and organic linker self-assemble to form a framework which can be 1D/2D/3D in connectivity. The first conductive MOF, Cu[Cu(2,3-pyrazinedithiol)2] was described in 2009 and exhibited electrical conductivity of 6 × 10−4 S cm−1 at 300 K.

Photonic crystal sensors use photonic crystals: nanostructures composed of periodic arrangements of dielectric materials that interact with light depending on their particular structure, reflecting lights of specific wavelengths at specific angles. Any change in the periodicity or refractive index of the structure can give rise to a change in the reflected color, or the color perceived by the observer or a spectrometer. That simple principle makes them useful colorimetric intuitive sensors for different applications including, but not limited to, environmental analysis, temperature sensing, magnetic sensing, biosensing, diagnostics, food quality control, security, and mechanical sensing. Many animals in nature such as fish or beetles employ responsive photonic crystals for camouflage, signaling or to bait their prey. The variety of materials utilizable in such structures ranging from inorganic, organic as well as plasmonic metal nanoparticles makes these structures highly customizable and versatile. In the case of inorganic materials, variation of the refractive index is the most commonly exploited effect in sensing, while periodicity change is more commonly exhibited in polymer-based sensors. Besides their small size, current developments in manufacturing technologies have made them easy and cheap to fabricate on a larger scale, making them mass-producible and practical.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Albert, Keith J.; Lewis, Nathan S.; Schauer, Caroline L.; Sotzing, Gregory A.; Stitzel, Shannon E.; Vaid, Thomas P.; Walt, David R. (2000-07-01). "Cross-Reactive Chemical Sensor Arrays". Chemical Reviews. 100 (7): 2595–2626. doi:10.1021/cr980102w. ISSN   0009-2665. PMID   11749297.
  2. 1 2 3 4 5 6 7 8 9 10 Johnson, Kevin J.; Rose-Pehrsson, Susan L. (2015-07-10). "Sensor Array Design for Complex Sensing Tasks". Annual Review of Analytical Chemistry. 8 (1): 287–310. Bibcode:2015ARAC....8..287J. doi:10.1146/annurev-anchem-062011-143205. ISSN   1936-1327. PMID   26132346.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Li, Zheng; Askim, Jon R.; Suslick, Kenneth S. (2019-01-09). "The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays". Chemical Reviews. 119 (1): 231–292. doi:10.1021/acs.chemrev.8b00226. ISSN   0009-2665. PMID   30207700. S2CID   206542436.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Askim, Jon R.; Mahmoudi, Morteza; Suslick, Kenneth S. (2013-10-21). "Optical sensor arrays for chemical sensing: the optoelectronic nose". Chemical Society Reviews. 42 (22): 8649–8682. doi:10.1039/C3CS60179J. ISSN   1460-4744. PMID   24091381.
  5. 1 2 3 4 5 Janata, Jiří; Josowicz, Mira; Vanýsek, Petr; DeVaney, D. Michael (1998-06-01). "Chemical Sensors". Analytical Chemistry. 70 (12): 179–208. doi:10.1021/a1980010w. ISSN   0003-2700.
  6. Seiyama, Tetsuro; Kato, Akio; Fujiishi, Kiyoshi; Nagatani, Masanori (1962-10-01). "A New Detector for Gaseous Components Using Semiconductive Thin Films". Analytical Chemistry. 34 (11): 1502–1503. doi:10.1021/ac60191a001. ISSN   0003-2700.
  7. Svechtarova, Mila I.; Buzzacchera, Irene; Toebes, B. Jelle; Lauko, Jan; Anton, Nicoleta; Wilson, Christopher J. (2016). "Sensor Devices Inspired by the Five Senses: A Review". Electroanalysis. 28 (6): 1201–1241. doi: 10.1002/elan.201600047 . ISSN   1521-4109.
  8. 1 2 Cuypers, Wim; Lieberzeit, Peter A. (2018). "Combining Two Selection Principles: Sensor Arrays Based on Both Biomimetic Recognition and Chemometrics". Frontiers in Chemistry. 6: 268. doi: 10.3389/fchem.2018.00268 . ISSN   2296-2646. PMC   6088186 . PMID   30128311.
  9. Dickinson, Todd A; White, Joel; Kauer, John S; Walt, David R (1998-06-01). "Current trends in 'artificial-nose' technology". Trends in Biotechnology. 16 (6): 250–258. doi:10.1016/S0167-7799(98)01185-8. ISSN   0167-7799. PMID   9652136.
  10. Schroeder, Vera; Evans, Ethan D.; Wu, You-Chi Mason; Voll, Constantin-Christian A.; McDonald, Benjamin R.; Savagatrup, Suchol; Swager, Timothy M. (2019-08-23). "Chemiresistive Sensor Array and Machine Learning Classification of Food". ACS Sensors. 4 (8): 2101–2108. doi:10.1021/acssensors.9b00825. hdl: 1721.1/128141 . PMID   31339035. S2CID   198192747.
  11. Jurs, P. C.; Bakken, G. A.; McClelland, H. E. (2000-07-01). "Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes". Chemical Reviews. 100 (7): 2649–2678. doi:10.1021/cr9800964. ISSN   0009-2665. PMID   11749299.
  12. 1 2 3 4 5 Wolfrum, Edward J.; Meglen, Robert M.; Peterson, Darren; Sluiter, Justin (2006-05-23). "Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels". Sensors and Actuators B: Chemical. 115 (1): 322–329. doi:10.1016/j.snb.2005.09.026. ISSN   0925-4005.
  13. "Electronic noses". warwick.ac.uk. Retrieved 2021-02-24.
  14. Su, Ming; Li, Shuyou; Dravid, Vinayak P. (2003-08-01). "Miniaturized Chemical Multiplexed Sensor Array". Journal of the American Chemical Society. 125 (33): 9930–9931. doi:10.1021/ja035727c. ISSN   0002-7863. PMID   12914449.
  15. Liu, Sophie F.; Moh, Lionel C. H.; Swager, Timothy M. (2015-05-26). "Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds". Chemistry of Materials. 27 (10): 3560–3563. doi:10.1021/acs.chemmater.5b00153. hdl: 1721.1/108262 . ISSN   0897-4756. S2CID   100421482.
  16. Shirsat, Mahendra D.; Sarkar, Tapan; Kakoullis, James; Myung, Nosang V.; Konnanath, Bharatan; Spanias, Andreas; Mulchandani, Ashok (2012-02-09). "Porphyrin-Functionalized Single-Walled Carbon Nanotube Chemiresistive Sensor Arrays for VOCs". The Journal of Physical Chemistry C. 116 (5): 3845–3850. doi:10.1021/jp210582t. ISSN   1932-7447. PMC   3292351 . PMID   22393460.
  17. Campbell, Michael G.; Liu, Sophie F.; Swager, Timothy M.; Dincă, Mircea (2015-11-04). "Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks". Journal of the American Chemical Society. 137 (43): 13780–13783. doi: 10.1021/jacs.5b09600 . hdl: 1721.1/110513 . ISSN   0002-7863. PMID   26456526.
  18. Meng, Zheng; Aykanat, Aylin; Mirica, Katherine A. (2019-02-06). "Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases". Journal of the American Chemical Society. 141 (5): 2046–2053. doi:10.1021/jacs.8b11257. ISSN   0002-7863. PMID   30596491. S2CID   58654557.
  19. Meng, Zheng; Stolz, Robert M.; Mirica, Katherine A. (2019-07-31). "Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity". Journal of the American Chemical Society. 141 (30): 11929–11937. doi:10.1021/jacs.9b03441. ISSN   0002-7863. PMID   31241936. S2CID   195694903.
  20. Gustafson, Jenna A.; Wilmer, Christopher E. (2017-03-23). "Computational Design of Metal–Organic Framework Arrays for Gas Sensing: Influence of Array Size and Composition on Sensor Performance". The Journal of Physical Chemistry C. 121 (11): 6033–6038. doi:10.1021/acs.jpcc.6b09740. ISSN   1932-7447.
  21. Sousa, Rachel; Simon, Cory M. (2020-12-24). "Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays". ACS Sensors. 5 (12): 4035–4047. doi:10.1021/acssensors.0c02014. PMID   33297672. S2CID   228087991.
  22. Sturluson, Arni; Sousa, Rachel; Zhang, Yujing; Huynh, Melanie T.; Laird, Caleb; York, Arthur H. P.; Silsby, Carson; Chang, Chih-Hung; Simon, Cory M. (2020-02-05). "Curating Metal–Organic Frameworks To Compose Robust Gas Sensor Arrays in Dilute Conditions". ACS Applied Materials & Interfaces. 12 (5): 6546–6564. doi:10.1021/acsami.9b16561. ISSN   1944-8244. PMID   31918544. S2CID   210133455.
  23. Yao, Ming-Shui; Tang, Wen-Xiang; Wang, Guan-E.; Nath, Bhaskar; Xu, Gang (2016). "MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance". Advanced Materials. 28 (26): 5229–5234. Bibcode:2016AdM....28.5229Y. doi:10.1002/adma.201506457. ISSN   1521-4095. PMID   27153113. S2CID   205267428.
  24. Doleman, Brett J.; Sanner, Robert D.; Severin, Erik J.; Grubbs, Robert H.; Lewis, Nathan S. (1998-07-01). "Use of Compatible Polymer Blends To Fabricate Arrays of Carbon Black−Polymer Composite Vapor Detectors". Analytical Chemistry. 70 (13): 2560–2564. doi:10.1021/ac971238h. ISSN   0003-2700. PMID   9666726.
  25. Lonergan, Mark C.; Severin, Erik J.; Doleman, Brett J.; Beaber, Sara A.; Grubbs, Robert H.; Lewis, Nathan S. (1996-01-01). "Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black−Polymer Resistors". Chemistry of Materials. 8 (9): 2298–2312. doi:10.1021/cm960036j. ISSN   0897-4756.
  26. 1 2 Shimizu, Ken D; Stephenson, Clifton J (2010-12-01). "Molecularly imprinted polymer sensor arrays". Current Opinion in Chemical Biology. Model Systems/Biomolecular Synthesis and Modification. 14 (6): 743–750. doi:10.1016/j.cbpa.2010.07.007. ISSN   1367-5931. PMID   20685156.
  27. "Sensigent". sensigent.com. Retrieved 2021-02-24.
  28. 1 2 Patil, Virendra S.; Lee, Myung-Goo; Yun, Jaesub; Lee, Jong-Seok; Lim, Sung H.; Yi, Gi-Ra (2018-10-30). "Chemically Resistant Perfluoroalkoxy Nanoparticle-Packed Porous Substrates and Their Use in Colorimetric Sensor Arrays". Langmuir. 34 (43): 13014–13024. doi:10.1021/acs.langmuir.8b02481. ISSN   0743-7463. PMID   30278141. S2CID   52911828.
  29. Aernecke, Matthew J.; Walt, David R. (2009-11-05). "Optical-fiber arrays for vapor sensing". Sensors and Actuators B: Chemical. Special Issue In Honour of Professor Ingemar Lundström. 142 (2): 464–469. doi:10.1016/j.snb.2009.06.054. ISSN   0925-4005.
  30. Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Zhong, Wenxuan; Suslick, Kenneth S. (2010-11-15). "Colorimetric Sensor Array for Determination and Identification of Toxic Industrial Chemicals". Analytical Chemistry. 82 (22): 9433–9440. doi:10.1021/ac1020886. ISSN   0003-2700. PMID   20954720. S2CID   10276875.
  31. Rana, Subinoy; Singla, Arvind K.; Bajaj, Avinash; Elci, S. Gokhan; Miranda, Oscar R.; Mout, Rubul; Yan, Bo; Jirik, Frank R.; Rotello, Vincent M. (2012-09-25). "Array-Based Sensing of Metastatic Cells and Tissues Using Nanoparticle–Fluorescent Protein Conjugates". ACS Nano. 6 (9): 8233–8240. doi:10.1021/nn302917e. ISSN   1936-0851. PMC   3603354 . PMID   22920837.
  32. Rochat, Sébastien; Severin, Kay (2010-07-12). "Pattern-Based Sensing with Metal−Dye Complexes: Sensor Arrays versus Dynamic Combinatorial Libraries". Journal of Combinatorial Chemistry. 12 (4): 595–599. doi:10.1021/cc1000727. ISSN   1520-4766. PMID   20518552.
  33. Crooks, Richard M.; Ricco, Antonio J. (1997-07-31). "New Organic Materials Suitable for Use in Chemical Sensor Arrays". Archived from the original on June 1, 2022.{{cite journal}}: Cite journal requires |journal= (help)
  34. Lange, Dirk; Hagleitner, Christoph; Hierlemann, Andreas; Brand, Oliver; Baltes, Henry (2002-07-01). "Complementary Metal Oxide Semiconductor Cantilever Arrays on a Single Chip: Mass-Sensitive Detection of Volatile Organic Compounds". Analytical Chemistry. 74 (13): 3084–3095. doi:10.1021/ac011269j. ISSN   0003-2700. PMID   12141668.
  35. Länge, Kerstin (2019-12-06). "Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review". Sensors (Basel, Switzerland). 19 (24): 5382. Bibcode:2019Senso..19.5382L. doi: 10.3390/s19245382 . ISSN   1424-8220. PMC   6960530 . PMID   31817599.
  36. Muckley, Eric S.; Anazagasty, Cristain; Jacobs, Christopher B.; Hianik, Tibor; Ivanov, Ilia N. (2016-09-27). Kymissis, Ioannis; Shinar, Ruth; Torsi, Luisa (eds.). "Low-cost scalable quartz crystal microbalance array for environmental sensing". Organic Sensors and Bioelectronics IX. 9944. International Society for Optics and Photonics: 99440Y. Bibcode:2016SPIE.9944E..0YM. doi:10.1117/12.2237942. S2CID   114696805.
  37. 1 2 3 Bratov, A.; Abramova, N.; Ipatov, A. (2010-09-30). "Recent trends in potentiometric sensor arrays—A review". Analytica Chimica Acta. 678 (2): 149–159. Bibcode:2010AcAC..678..149B. doi:10.1016/j.aca.2010.08.035. ISSN   0003-2670. PMID   20888446.
  38. Nuñez, L.; Cetó, X.; Pividori, M.I.; Zanoni, M.V.B.; Del Valle, M. (2013-09-01). "Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters". Microchemical Journal. 110: 273–279. doi: 10.1016/j.microc.2013.04.018 . ISSN   0026-265X.
  39. "Medical Research Highlights". sensigent.com. 14 March 2018. Retrieved 17 July 2023.
  40. Anthes, Emily. "E-noses Could Make Diseases Something to Sniff at". Scientific American. Retrieved 2021-02-24.
  41. Shan, Benjie; Broza, Yoav Y.; Li, Wenjuan; Wang, Yong; Wu, Sihan; Liu, Zhengzheng; Wang, Jiong; Gui, Shuyu; Wang, Lin; Zhang, Zhihong; Liu, Wei (2020-09-22). "Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath". ACS Nano. 14 (9): 12125–12132. doi:10.1021/acsnano.0c05657. ISSN   1936-0851. PMC   7457376 . PMID   32808759.
  42. "WOLF - Enose". warwick.ac.uk. Retrieved 2021-02-24.
  43. Pavlou, Alexandros K.; Magan, Naresh; McNulty, Cliodna; Jones, Jeff; Sharp, Dorothy; Brown, Jonathon; Turner, Anthony P. F. (2002-07-15). "Use of an electronic nose system for diagnoses of urinary tract infections". Biosensors & Bioelectronics. 17 (10): 893–899. doi:10.1016/s0956-5663(02)00078-7. ISSN   0956-5663. PMID   12243908.
  44. "Cyranose 320 Electronic Nose". sensigent.com. 14 March 2018. Retrieved 17 July 2023.
  45. Dutta, Ritaban; Hines, Evor L.; Gardner, Julian W.; Boilot, Pascal (2002-10-16). "Bacteria classification using Cyranose 320 electronic nose". BioMedical Engineering OnLine. 1 (1): 4. doi: 10.1186/1475-925X-1-4 . ISSN   1475-925X. PMC   149373 . PMID   12437783.