DTMF

Last updated
Autovon keypads were one of the few production units to include all 16 DTMF signals. The red keys in the fourth column produce the A, B, C, and D DTMF events. 66a3aDTMFpad.jpg
Autovon keypads were one of the few production units to include all 16 DTMF signals. The red keys in the fourth column produce the A, B, C, and D DTMF events.

Dual-tone multi-frequency signaling (DTMF) is a telecommunication signaling system using the voice-frequency band over telephone lines between telephone equipment and other communications devices and switching centers. [1] DTMF was first developed in the Bell System in the United States, and became known under the trademark Touch-Tone for use in push-button telephones supplied to telephone customers, starting in 1963. DTMF is standardized as ITU-T Recommendation Q.23. [2] It is also known in the UK as MF4.

Contents

Touch-Tone dialing with a telephone keypad gradually replaced the use of rotary dials and has become the industry standard in telephony. Other multi-frequency systems are also used for signaling on trunks in the telephone network.

Multifrequency signaling

Before the development of DTMF, telephone numbers were dialed by users with a loop-disconnect (LD) signaling, more commonly known as pulse dialing (dial pulse, DP) in the United States. It functions by interrupting the current in the local loop between the telephone exchange and the calling party's telephone at a precise rate with a switch in the telephone that is operated by the rotary dial as it spins back to its rest position after having been rotated to each desired number. The exchange equipment responds to the dial pulses either directly by operating relays or by storing the number in a digit register that records the dialed number. The physical distance for which this type of dialing was possible was restricted by electrical distortions and was possible only on direct metallic links between end points of a line. Placing calls over longer distances required either operator assistance or provision of special subscriber trunk dialing equipment. Operators used an earlier type of multi-frequency signaling.

Multi-frequency signaling (MF) is a group of signaling methods that use a mixture of two pure tone (pure sine wave) sounds. Various MF signaling protocols were devised by the Bell System and CCITT. The earliest of these were for in-band signaling between switching centers, where long-distance telephone operators used a 16-digit keypad to input the next portion of the destination telephone number in order to contact the next downstream long-distance telephone operator. This semi-automated signaling and switching proved successful in both speed and cost effectiveness. Based on this prior success with using MF by specialists to establish long-distance telephone calls, dual-tone multi-frequency signaling was developed for end-user signaling without the assistance of operators.

The DTMF system uses a set of eight audio frequencies transmitted in pairs to represent 16 signals, represented by the ten digits, the letters A to D, and the symbols # and *. As the signals are audible tones in the voice frequency range, they can be transmitted through electrical repeaters and amplifiers, and over radio and microwave links, thus eliminating the need for intermediate operators on long-distance circuits.

AT&T described the product as "a method for pushbutton signaling from customer stations using the voice transmission path". [3] In order to prevent consumer telephones from interfering with the MF-based routing and switching between telephone switching centers, DTMF frequencies differ from all of the pre-existing MF signaling protocols between switching centers: MF/R1, R2, CCS4, CCS5, and others that were later replaced by SS7 digital signaling. DTMF was known throughout the Bell System by the trademark Touch-Tone. The term was first used by AT&T in commerce on July 5, 1960, and was introduced to the public on November 18, 1963, when the first push-button telephone was made available to the public. As a parent company of Bell Systems, AT&T held the trademark from September 4, 1962, to March 13, 1984. [4] It is standardized by ITU-T Recommendation Q.23. In the UK, it is also known as MF4.

Other vendors of compatible telephone equipment called the Touch-Tone feature tone dialing or DTMF. Automatic Electric (GTE) referred to it as "Touch-calling" in their marketing. Other trade names such as Digitone were used by the Northern Electric Company in Canada.

As a method of in-band signaling, DTMF signals were also used by cable television broadcasters as cue tones to indicate the start and stop times of local commercial insertion points during station breaks for the benefit of cable companies. [5] Until out-of-band signaling equipment was developed in the 1990s, fast, unacknowledged DTMF tone sequences could be heard during the commercial breaks of cable channels in the United States and elsewhere.[ citation needed ] Previously, terrestrial television stations used DTMF tones to control remote transmitters. [6] In IP telephony, DTMF signals can also be delivered as either in-band or out-of-band tones, [7] or even as a part of signaling protocols, [8] as long as both endpoints agree on a common approach to adopt.

Keypad

DTMF keypad layout. DTMF keypad layout.svg
DTMF keypad layout.
Combination of 1209 Hz and 697 Hz sine waves, representing DTMF "1" MultiTone1.png
Combination of 1209 Hz and 697 Hz sine waves, representing DTMF "1"

The DTMF telephone keypad is laid out as a matrix of push buttons in which each row represents the low frequency component and each column represents the high frequency component of the DTMF signal. The commonly used keypad has four rows and three columns, but a fourth column is present for some applications. Pressing a key sends a combination of the row and column frequencies. For example, the 1 key produces a superimposition of a 697 Hz low tone and a 1209 Hz high tone. Initial pushbutton designs employed levers, enabling each button to activate one row and one column contact. The tones are decoded by the switching center to determine the keys pressed by the user.

DTMF keypad frequencies (with sound clips) [9]
1209 Hz1336 Hz1477 Hz1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

#, *, A, B, C, and D

Engineers had envisioned telephones being used to access computers and automated response systems. [10] They consulted with companies to determine the requirements. This led to the addition of the number sign (#, ''pound'' or "diamond" in this context, "hash", "square" or "gate" in the UK, and " octothorpe '' by the original engineers) and asterisk or "star" (*) keys as well as a group of keys for menu selection: A, B, C and D. In the end, the lettered keys were dropped from most keypads and it was many years before the two symbol keys became widely used for vertical service codes such as *67 in the United States and Canada to suppress caller ID.

Public payphones that accept credit cards use these additional codes to send the information from the magnetic strip.

The AUTOVON telephone system of the United States Armed Forces used signals A, B, C, and D to assert certain privilege and priority levels when placing telephone calls. [11] Precedence is still a feature of military telephone networks, but using number combinations. For example, entering 93 before a number is a priority call.

Present-day uses of the signals A, B, C and D are rare in telephone networks, and are exclusive to network control. For example, A is used in some networks for cycling through a list of carriers.[ citation needed ] The signals are used in radio phone patch and repeater operations to allow, among other uses, control of the repeater while connected to an active telephone line.[ citation needed ]

The signals *, #, A, B, C and D are still widely used worldwide by amateur radio operators and commercial two-way radio systems for equipment control, repeater control, remote-base operations and some telephone communications systems.[ citation needed ]

DTMF signaling tones may also be heard at the start or end of some prerecorded VHS videocassettes. [12] Information on the master version of the video tape is encoded in the DTMF tones. The encoded tones provide information to automatic duplication machines, such as format, duration and volume levels in order to replicate the original video as closely as possible.

DTMF tones are used in some caller ID systems to transfer the caller ID information, a function that is performed in the United States by Bell 202 modulated frequency-shift keying (FSK) signaling.

Decoding

Two CMD CM8870CSI DTMF Receivers 1&1 NetXXL powered by FRITZ! - CMD CM8870CSI on mainboard-1833.jpg
Two CMD CM8870CSI DTMF Receivers

DTMF was originally decoded by tuned filter banks. By the end of the 20th century, digital signal processing became the predominant technology for decoding. DTMF decoding algorithms typically use the Goertzel algorithm although application of MUSIC (algorithm) to DTMF decoding has been shown to outperform Goertzel and being the only possibility in cases when number of available samples is limited. [13] As DTMF signaling is often transmitted in-band with voice or other audio signals present simultaneously, the DTMF signal definition includes strict limits for timing (minimum duration and interdigit spacing), frequency deviations, harmonics, and amplitude relation of the two components with respect to each other (twist). [14]

Other multiple frequency signals

National telephone systems define other tones, outside the DTMF specification, that indicate the status of lines, equipment, or the result of calls, and for control of equipment for troubleshooting or service purposes. Such call-progress tones are often also composed of multiple frequencies and are standardized in each country. The Bell System defined them in the Precise Tone Plan. [15] Bell's Multi-frequency signaling was exploited by blue box devices.

Some early modems were based on touch-tone frequencies, such as Bell 400-style modems. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Rotary dial</span> Component that allows dialing numbers

A rotary dial is a component of a telephone or a telephone switchboard that implements a signaling technology in telecommunications known as pulse dialing. It is used when initiating a telephone call to transmit the destination telephone number to a telephone exchange.

<span class="mw-page-title-main">Pulse dialing</span>

Pulse dialing is a signaling technology in telecommunications in which a direct current local loop circuit is interrupted according to a defined coding system for each signal transmitted, usually a digit. This lends the method the often used name loop disconnect dialing. In the most common variant of pulse dialing, decadic dialing, each of the ten Arabic numerals are encoded in a sequence of up to ten pulses. The most common version decodes the digits 1 through 9, as one to nine pulses, respectively, and the digit 0 as ten pulses. Historically, the most common device to produce such pulse trains is the rotary dial of the telephone, lending the technology another name, rotary dialing.

In telecommunication, signaling is the use of signals for controlling communications. This may constitute an information exchange concerning the establishment and control of a telecommunication circuit and the management of the network.

Phreaking is a slang term coined to describe the activity of a culture of people who study, experiment with, or explore telecommunication systems, such as equipment and systems connected to public telephone networks. The term phreak is a sensational spelling of the word freak with the ph- from phone, and may also refer to the use of various audio frequencies to manipulate a phone system. Phreak, phreaker, or phone phreak are names used for and by individuals who participate in phreaking.

Signalling System No. 7 (SS7) is a set of telephony signaling protocols developed in the 1970s, which is used to set up and tear down telephone calls in most parts of the world-wide public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.

Plain Old Telephone Service (POTS), or Plain Ordinary Telephone System, is a retronym for voice-grade telephone service employing analog signal transmission over copper loops. Originally POTS stood for Post Office Telephone Service as early phone lines in most parts of the world were operated directly by the local Post Office.

<span class="mw-page-title-main">Autovon</span> Former internal U.S. military telephone system

The Automatic Voice Network was a worldwide American military telephone system. The system was built starting in 1963, based on the Army's existing Switch Communications Automated Network (SCAN) system.

<span class="mw-page-title-main">Blue box</span> Device for hacking telephone networks

A blue box is an electronic device that produces tones used to generate the in-band signaling tones formerly used within the North American long-distance telephone network to send line status and called number information over voice circuits. This allowed an illicit user, referred to as a "phreaker", to place long-distance calls, without using the network's user facilities, that would be billed to another number or dismissed entirely as an incomplete call. A number of similar "color boxes" were also created to control other aspects of the phone network.

<span class="mw-page-title-main">Telephone keypad</span> Keypad that appears on some telephones

A telephone keypad is a keypad installed on a push-button telephone or similar telecommunication device for dialing a telephone number. It was standardized when the dual-tone multi-frequency signaling (DTMF) system was developed in the Bell System in the United States in the 1960s that replaced rotary dialing originally developed in electromechanical switching systems. Because of the installed abundance of rotary dial equipment well into the 1990s, many telephone keypads were also designed to produce loop-disconnect pulses electronically, and some could be optionally switched to produce either DTMF or pulses.

The public switched telephone network (PSTN) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telephony. The PSTN consists of telephone lines, fiber-optic cables, microwave transmission links, cellular networks, communications satellites, and undersea telephone cables interconnected by switching centers, such as central offices, network tandems, and international gateways, which allow telephone users to communicate with each other.

In telephony, multi-frequency signaling (MF) is a type of signaling that was introduced by the Bell System after World War II. It uses a combination of audible tones for address transport and supervision signaling on trunk lines between central offices. The signaling is sent in-band over the same channel as the bearer channel used for voice traffic.

In telecommunications, in-band signaling is the sending of control information within the same band or channel used for data such as voice or video. This is in contrast to out-of-band signaling which is sent over a different channel, or even over a separate network. In-band signals may often be heard by telephony participants, while out-of-band signals are inaccessible to the user. The term is also used more generally, for example of computer data files that include both literal data, and metadata and/or instructions for how to process the literal data.

<span class="mw-page-title-main">Improved Mobile Telephone Service</span> Early mobile telephone standard

The Improved Mobile Telephone Service (IMTS) was a pre-cellular VHF/UHF radio system which linked to the public telephone network. IMTS was the radiotelephone equivalent of land dial phone service. Introduced in 1964, it replaced Mobile Telephone Service (MTS) and improved on most MTS systems by offering direct-dial rather than connections through a live operator, and full-duplex operation so both parties could talk at the same time.

Signalling System R2 is a signalling protocol for telecommunications that was in use from the 1960s mostly in Europe, and later also in Latin America, Asia, and Australia, to convey exchange information between two telephone switching systems for establishing a telephone call via a telephone trunk. It is suitable for signaling on analog as well as digital circuits.

In telecommunications, falsing is a signaling error condition when a signal decoder detects a valid input although the implied protocol function was not intended. This is also known as a false decode. Other forms are referred to as talk-off.

In a conventional, analog two-way radio system, a standard radio has noise squelch or carrier squelch, which allows a radio to receive all transmissions. Selective calling is used to address a subset of all two-way radios on a single radio frequency channel. Where more than one user is on the same channel, selective calling can address a subset of all receivers or can direct a call to a single radio. Selective calling features fit into two major categories—individual calling and group calling. Individual calls generally have longer time-constants: it takes more air-time to call an individual radio unit than to call a large group of radios.

<span class="mw-page-title-main">Push-button telephone</span> Telephone which has buttons or keys for dialing

A push-button telephone is a telephone that has buttons or keys for dialing a telephone number, in contrast to a rotary dial used in earlier telephones.

<span class="mw-page-title-main">Telephone exchange</span> Interconnects telephones for calls

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.

Dialling is the action of initiating a telephone call by operating the rotary dial or the telephone keypad of a telephone.

References

  1. Z., Dodd, Annabel (2012). The essential guide to telecommunications (5th ed.). Upper Saddle River, NJ: Prentice Hall. ISBN   9780137058914. OCLC   779863446.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Technical features of push-button telephone sets (Report). Recommendation. ITU. Q.23.
  3. AT&T, Compatibility Bulletin No. 105
  4. "TESS -- Error".
  5. "DISH NETWORK L.L.C., INTERNATIONAL AFFILIATION AGREEMENT: Metro Media Holding Corp (Filer)". U.S. Securities and Exchange Commission. 27 January 2016. S.E.C. Accession No. 0001557234-16-000400. Retrieved 26 April 2020. Cue Tones: Within four (4) months after the Launch Date, Network shall deliver the Signal with industry standard DTMF cue tones for the insertion of up to a maximum of twelve (12) minutes per hour of commercial advertising time. Until such cue tones are delivered or at any time thereafter upon DISH's request, DISH may deliver all or part of its Advertising Allocation to Network via FTP or courier, at Network's sole cost and expense, and Network shall insert such Advertising Allocation at Network's sole cost and expense.
  6. "In the Matter of Amendment of Part 73, Subpart G, of the Commission's Rules Regarding the Emergency Broadcast System, REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULE MAKING, B. Cable participants § 63,65" (PDF). Washington, D.C.: Federal Communications Commission. 9 December 1994. p.  23. FCC 94-288. Retrieved 26 April 2020. Dual Tone Multi-Frequency: The Society of Cable Television Engineers (SCTE) reported that many cable systems have installed Dual Tone Multi-Frequency (DTMF) signalling equipment between the cable system and local officials for use in transmitting emergency information as part of the local franchise agreement. The SCTE recommended that DTMF decoding be incorporated in the new equipment since it is already used by many cable systems. The new EAS code protocol will be a national standard and should exceed the capabilities of DTMF. Local emergency managers will find the EAS equipment much more flexible than DTMF equipment. For example, they will be able to access EAS equipment at cable headends directly. The emergency messages in the EAS protocol will also be available to local broadcast stations and NWS offices for further dissemination.
  7. H. Schulzrinne and T. Taylor, RTP Payload for DTMF Digits, Telephony Tones, and Telephony Signals, IETF RFC 4733, December 2006.
  8. C. Holmberg, E. Burger, H. Kaplan, Session Initiation Protocol (SIP) INFO Method and Package Framework, IETF RFC 6086, January 2011.
  9. 1 2 Don Lancaster. "TV Typewriter Cookbook". (TV Typewriter). Section "400-Style (Touch-Tone) Modems". p. 177-178.
  10. Houston, Keith (24 September 2013). Shady Characters: The Secret Life of Punctuation, Symbols, and Other Typographical Marks. W. W. Norton. p. 45. ISBN   978-0-393-24154-9.
  11. ""What are the ABCD tones?" — Tech FAQ". 6 April 2019.
  12. Broadcast Engineering. Intertec Publishing Corporation], $4c 1959. 1983.
  13. "P. Gregor, Application of MUSIC algorithm to DTMF detection, Engineering Thesis, Warsaw University of Technology, 2022".{{cite journal}}: Cite journal requires |journal= (help)
  14. W. D. Reeves, Subscriber Loop Signaling and Transmission Handbook—Analog, IEEE (1992), p.27
  15. AT&T, Notes on Distance Dialing, 1968

Further reading