Datacasting

Last updated

Datacasting (data broadcasting) is the broadcasting of data over a wide area via radio waves. It most often refers to supplemental information sent by television stations along with digital terrestrial television (DTT), but may also be applied to digital signals on analog TV or radio. It generally does not apply to data inherent to the medium, such as PSIP data that defines virtual channels for DTT or direct broadcast satellite system, or to things like cable modems or satellite modems, which use a completely separate channel for data. [1]

Contents

Overview

Datacasting often provides news, weather forecasting, traffic reporting, stock market, and other information which may or may not relate to the carried programs. It may also be interactive, such as gaming, shopping, or education. An electronic program guide is usually included, although it somewhat stretches the definition, as this is often considered inherent to the digital broadcast standard.

The ATSC, DVB and ISDB standards allow for broadband datacasting via DTT, though they do not necessarily define how. The overscan and VBI are used for analog TV, for moderate and low bandwidths (including closed captioning in the VBI) respectively. DirectBand and RDS/RBDS are medium and narrow subcarriers used for analog FM radio. The EUREKA 147 and HD Radio standards both allow for datacasting on digital radio, defining a few basics but also allowing for later expansion.

The term IP Datacasting (IPDC) is used in DVB-H for the technical elements required to send IP packets over DVB-H broadband downstream channel combined with a return channel over a mobile communications network such as GPRS or UMTS. The set of specifications for IP Datacast (phase1) was approved by the DVB project in October 2005.

Datacasting services around the world

North America

Ambient Information Network

Ambient Information Network, a datacasting network owned by Ambient Devices presently hosted by U.S.A. Mobility, a U.S. paging service which focuses on information of interest to the local (or larger) area, such as weather and stock indices, and personalized information will be provided with a paid ambient subscription on that particular device.

RBDS

A slight variation of the European Radio Data System, RBDS is carried on a 57 kHz subcarrier on FM radio stations. While originally intended for program-associated data, it can also be used for datacasting purposes including paging and dGPS.

DirectBand

DirectBand, owned by Microsoft, uses the 67.65 kHz subcarrier leased from FM radio stations. This subcarrier delivers about 12 kbit/s (net after error correction) of data per station, for over 100 MB per day per city. Data includes traffic, sports, weather, stocks, news, movie times, calendar appointments, and local time.

MovieBeam

The now-defunct MovieBeam service used dNTSC technology by Dotcast to transmit 720p HDTV movies in the lower vestigial sideband of NTSC analog TV. The set-top box stored the movies to be viewed on demand for a fee. This was distributed through PBS's National Datacast.

TV Guide On Screen

TV Guide On Screen is an advertising-supported datacast sent by one local station in each media market. It supplements or replaces the limited electronic program guide sent by each TV station, which is already mandated by the U.S. Federal Communications Commission (FCC).

ATSC-M/H

ATSC-M/H is yet another mobile TV standard, although it is transmitted and controlled by the broadcasters instead of a third party, and is therefore mostly free-to-air (although it can also be subscription-based). From a technical standpoint, it is an IP-encapsulated datacast of MPEG-4 streaming video, alongside the ATSC MPEG transport stream used for terrestrial television broadcasting. Heavy error correction, separate from that native to ATSC, compensates for ATSC's poor mobile (and often fixed) reception.

UpdateTV

UpdateTV is a service used by some brands of TV sets and other ATSC tuners to update their firmware via over-the-air programming. This is also transmitted on PBS stations via National Datacast.

Australia

Australian broadcast infrastructure company Broadcast Australia undertook a three-year trial in Sydney of a datacasting service using the DVB-T system for use in Australia.

The trial consisted of a number of services on one standard 7 MHz multiplex, collectively known as Digital Forty Four .

The collection included:

More recently a near-Australia wide broadcast of a datacasting channel called MyTalk commenced on April 13, 2007. Broadcasting as part of the multiplex on Southern Cross and Southern Cross Ten stations, it provided news, weather and other information, available free to anyone able to tune in. The stream consisted of text applicable to the viewer's location and a 4:3 video window of terrestrial TV from the relevant Southern Cross/Southern Cross Ten station.

On February 25, 2008, MyTalk ceased broadcasting. Digital Forty Four was shut down at exactly midnight on the night of April 30, 2010.

Malaysia

Malaysian multi-channel pay-TV operator, MiTV Corporation Sdn Bhd launched its IP-over-UHF service in September 2005. The full digital broadcast capacity was used to deliver IP services which such as multicast streaming and datacasting.

Middle East

Toosheh, or "Knapsack" in Persian is a datacasting technology that uses existing set-top-boxes for reception of files without requiring an Internet connection. No special equipment is required, the transmission is in the form of a standard video stream containing embedded data that is 'recorded' to a USB stick and then viewed using special software on a PC.

South Africa

Mindset Network has developed an IP satellite datacast platform for the distribution of educational and health content, to sites around South Africa and the rest of Africa as well. The model is a forward and store model, allowing users of the platform to view content in an on-demand fashion. Content distributed in this way includes video content, print-based content (in the form of PDF files), and interactive computer-based multimedia content.

Significantly, the model also includes access to a GPRS network that allows the receiving sites to communicate back to the Mindset central server. Communications include statistics about the physical health of the machine (e.g. power status, disk drive usage), as well as usage statistics indicating what content has been viewed.

The model also includes a distributed deployment of the Moodle LMS, allowing users to take assessments and have the results transmitted via GPRS to the Mindset server for accreditation.

United Kingdom

Teletext was used extensively on analogue channels; a type of datacasting using the overscan on analogue transmissions. Teletext Limited and Ceefax were the main providers. Within digital terrestrial television, the Digital Teletext name is used extensively although the technology used to provide this service is unrelated and uses the MHEG-5 UK profile.

Worldwide

Blockstream Satellite

Blockstream Satellite broadcasts the Bitcoin blockchain via a global network [2] of broadcast satellites. It also gives everyone the ability to transmit arbitrary files at low cost [3] which can be received in total anonymity worldwide by anyone with a standard DVB-S2 receiver card or USB adapter.

Outernet

Outernet's goal is to provide free access to content from the web through geostationary and Low Earth orbit satellites, made available effectively to all parts of the world. The project uses datacasting and User Datagram Protocol (UDP) through both small satellites, such as CubeSats, and larger, more conventional geostationary communications satellites in a satellite constellation network. Wi-Fi enabled devices would communicate with the satellite hotspots, which receive data broadcasts from satellites.

Advantages over Internet transmission

Datacasting has certain advantages over using the Internet, specifically concerning privacy and censorship resistance, which can be considered important in an era of mass surveillance.

Both satellite and terrestrial broadcast multiplexes can carry multicast IP data. This can be forwarded onto a LAN with a suitable receiver, such as a low-cost set-top-box running custom firmware. The software to transmit web pages over multicast is fairly easy to implement; some of the technology has been already developed. [4] Content received can be stored automatically on the set-top box's built in hard drive, served to users over Wi-Fi or Ethernet. A fractional broadcast multiplex can transmit up to hundreds of gigabytes of content each day. [5]

Privacy

Because the data stream is receive only, nobody can tell what a user is receiving. Thus the government cannot round up citizens for reading forbidden material in oppressive regimes. In extreme cases the receiver can be physically disconnected from the Internet to ensure maximum security, thus providing a system much more secure than Internet-based anonymity networks such as Tor. This could ultimately put a complete stop to law enforcement attempts to censor material on the darknet and making many censorship laws virtually impossible to enforce; thus restoring some of the 'anarchic freedom' of the early days of the Internet.

Censorship

It is much more difficult, on a technical and political level to jam a satellite signal compared to blocking a website. Data streams can be transmitted alongside television channels. An attempt to jam the data stream will end up jamming the TV stations as well.

Efficiency

Despite the very high cost of satellite bandwidth, [6] broadcasting to hundreds of thousands or millions of receivers may well be cheaper than using the Internet. No build-out and maintenance of costly physical infrastructure (e.g. fiber optic cables) is required for the end-user, only a satellite dish or TV antenna is necessary, allowing services such as educational materials to be delivered to underserved communities. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Digital television</span> Television transmission using digital encoding

Digital television (DTV) is the transmission of television signals using digital encoding, in contrast to the earlier analog television technology which used analog signals. At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s. Modern digital television is transmitted in high-definition television (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio in contrast to the narrower format (4:3) of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

<span class="mw-page-title-main">Television channel</span> Frequency/channel over which a television station is distributed

A television channel, or TV channel, is a terrestrial frequency or virtual number over which a television station or television network is distributed. For example, in North America, channel 2 refers to the terrestrial or cable band of 54 to 60 MHz, with carrier frequencies of 55.25 MHz for NTSC analog video (VSB) and 59.75 MHz for analog audio (FM), or 55.31 MHz for digital ATSC (8VSB). Channels may be shared by many different television stations or cable-distributed channels depending on the location and service provider

<span class="mw-page-title-main">DVB</span> Open standard for digital television broadcasting

Digital Video Broadcasting (DVB) is a set of international open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium, and are published by a Joint Technical Committee (JTC) of the European Telecommunications Standards Institute (ETSI), European Committee for Electrotechnical Standardization (CENELEC) and European Broadcasting Union (EBU).

<span class="mw-page-title-main">Terrestrial television</span> Television content transmitted via signals in the air

Terrestrial television or over-the-air television (OTA) is a type of television broadcasting in which the content is transmitted via radio waves from the terrestrial (Earth-based) transmitter of a TV station to a TV receiver having an antenna. The term terrestrial is more common in Europe and Latin America, while in Canada and the United States it is called over-the-air or simply broadcast. This type of TV broadcast is distinguished from newer technologies, such as satellite television, in which the signal is transmitted to the receiver from an overhead satellite; cable television, in which the signal is carried to the receiver through a cable; and Internet Protocol television, in which the signal is received over an Internet stream or on a network utilizing the Internet Protocol. Terrestrial television stations broadcast on television channels with frequencies between about 52 and 600 MHz in the VHF and UHF bands. Since radio waves in these bands travel by line of sight, reception is generally limited by the visual horizon to distances of 64–97 kilometres (40–60 mi), although under better conditions and with tropospheric ducting, signals can sometimes be received hundreds of kilometers distant.

DVB-T, short for Digital Video Broadcasting – Terrestrial, is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in Singapore in February, 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point. It is also used in the US by Amateur television operators.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

Integrated Services Digital Broadcasting is a Japanese broadcasting standard for digital television (DTV) and digital radio.

<span class="mw-page-title-main">ATSC standards</span> Standards for digital television in the US

Advanced Television Systems Committee (ATSC) standards are an International set of standards for broadcast and digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, South Korea and Trinidad & Tobago. Several former NTSC users, such as Japan, have not used ATSC during their digital television transition, because they adopted other systems such as ISDB developed by Japan, and DVB developed in Europe, for example.

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

Broadcasttelevision systems are the encoding or formatting systems for the transmission and reception of terrestrial television signals.

Digital terrestrial television is a technology for terrestrial television where television stations broadcast television content in a digital format. DTTV is a major technological advance over analog television, and has largely replaced analog television broadcast, which had been in common use since the middle of the 20th century. Test broadcasts began in 1998 with the changeover to DTTV, also known as the Analog Switchoff (ASO) or Digital Switchover (DSO), which began in 2006 and is now complete in many countries. The advantages of digital terrestrial television are similar to those obtained by digitizing platforms such as cable TV, satellite, and telecommunications: more efficient use of radio spectrum bandwidth, provision of more television channels than analog, better quality images, and potentially lower operating costs for broadcasters.

Free-to-air (FTA) services are television (TV) and radio services broadcast in unencrypted form, allowing any person with the appropriate receiving equipment to receive the signal and view or listen to the content without requiring a subscription, other ongoing cost, or one-off fee. In the traditional sense, this is carried on terrestrial radio signals and received with an antenna.

Digital terrestrial television in the United Kingdom encompasses over 100 television, radio and interactive services broadcast via the United Kingdom's terrestrial television network and receivable with a standard television set. The majority of digital terrestrial television (DTT) services, including the five former analogue channels, are broadcast free-to-air, and a further selection of encrypted pay TV services are also available.

In broadcasting, digital subchannels are a method of transmitting more than one independent program stream simultaneously from the same digital radio or television station on the same radio frequency channel. This is done by using data compression techniques to reduce the size of each individual program stream, and multiplexing to combine them into a single signal. The practice is sometimes called "multicasting".

IP over DVB implies that Internet Protocol datagrams are distributed using some digital television system, for example DVB-H, DVB-SH, DVB-T, DVB-S, DVB-C or their successors like DVB-T2, DVB-S2, and DVB-C2. This may take the form of IP over MPEG, where the datagrams are transferred over the MPEG transport stream, or the datagrams may be carried in the DVB baseband frames directly, as in GSE.

ATSC-M/H is a U.S. standard for mobile digital TV that allows TV broadcasts to be received by mobile devices.

<span class="mw-page-title-main">FTA receiver</span>

A free-to-air or FTA Receiver is a satellite television receiver designed to receive unencrypted broadcasts. Modern decoders are typically compliant with the MPEG-2/DVB-S and more recently the MPEG-4/DVB-S2 standard for digital television, while older FTA receivers relied on analog satellite transmissions which have declined rapidly in recent years.

Saorview is the national digital terrestrial television (DTT) service in Ireland. It is owned by RTÉ and operated by 2RN.

Satellite subcarrier audio is audio transmitted by way of satellite that uses a separate analog or digital signal carried on a main radio transmission on a specific satellite transponder. More technically, it is an already-modulated signal, which is then modulated into another signal of higher frequency and bandwidth. In a more general sense, satellite subcarrier audio is an early form of satellite radio not intended for the consumer market but was initially unencrypted, thus receivable to satellite hobbyists.

References

  1. "Datacasting | Homeland Security". www.dhs.gov.
  2. "Blockstream: Satellite Network Coverage" . Retrieved 30 July 2021.
  3. "Blockstream: Satellite Queue" . Retrieved 30 July 2021.
  4. "ATSC 3.0 Interactive Content" (PDF). ATSC. Retrieved 31 July 2021.
  5. "ATSC Datacasting Paves Way for Flexibility of ATSC 3.0 in Distance Education". February 2021. Retrieved 31 July 2021.
  6. "Satellite Internet Costs – transponder and VSAT equipment prices" . Retrieved 31 July 2021.
  7. "Innovations in Distance Education: Datacasting" . Retrieved 30 July 2021.