Dimensional stability (fabric)

Last updated

Dimensional stability (in fabric) pertains to a fabric's ability to maintain its initial size and shape even after undergoing wear and care, which is a desirable property. [1] Textile manufacturing is based on the conversion of fiber into yarn, yarn into fabric, includes spinning, weaving, or knitting, etc. The fabric passes through many inevitable changes and mechanical forces during this journey. When the products are immersed in water, the water acts as a relaxing medium, and all stresses and strains are relaxed and the fabric tries to come back to its original state. [2]

Contents

The more dimensionally stable a fabric is, the less it is subject to shrinkage. Shrinkage is the change of dimensions in textile products when they are washed or relaxed. The change is always expressed relative to the dimensions before the exposure of washing or relaxing. Shrinkage is also called residual shrinkage and measured in percentage. The major cause of shrinkage is the release of stresses and strains introduced in manufacturing processes.

Significance

The dimensional stability of textile materials is an important quality parameter. Failing and unstable materials can cause deforming of the garments or products. [3] Shrinkage is tested at various stages, but most importantly before cutting the fabric into further sewn products and after cutting and sewing prior to supplying the products to buyers and consumers. It is a required parameter of quality control to ensure the sizes of the products to avoid any complaints regarding deformation or change in dimensions after domestic laundry. [4] The tests [5] are conducted with provided specifications of buyers imitating the same conditions like washing cycle time, temperature and water ratio and fabric load and sometimes top loading and front loading washing machines are chosen to authenticate the test and assurance of the results. This procedure [6] provides standard and alternate home laundering conditions using an automatic washing machine. While the procedure includes several options, it is not possible to include every existing combination of laundering parameters. The test is applicable to all fabrics and end products suitable for home laundering.

Shrinkage has great significance because any expansion or shrinkage can cause deformation of the product, which could be a severe concern for the end-user, and the brand can lose its reputation. [7] Secondly, in the garment-making industry, consumption of the fabric is calculated in yards, so any variance than permissible limits is unacceptable. [3] Preshrunk fabrics and garments are also available. [8]

Types of shrinkage

Shrinkage is a change in dimensions across the length and width of the fabric after washing, usage, and when exposed to the relaxing of fabrics. Mainly shrinkage is of two types. One is minus shrinkage and the other is plus shrinkage. Skew (twisting of the vertical grains) is also observed along with shrinkage. Abnormal twisting is also considered as a non-conformity.

  1. Contraction: Any noticeable decrease in dimensions is known as Contraction (minus) shrinkage.
  2. Expansion: Any noticeable increase or expansion in dimension is known as Expansion (plus) shrinkage.

Causes

Composition and content determine the type and percentage of fibres. Natural fibres shrink more than synthetic fibres. Synthetic fibres are more stable due to their crystalline and thermoplastic nature. They do not shrink, whereas natural fibres are more prone to shrink because of more amorphous regions in their fibre structure which allows more absorption of water, swelling of fibres and increased lubricity increase the shrinking tendency. Blended fabrics normally synthetic and natural are also considered more stable.[ citation needed ]

The textile products which are loosely woven or knitted are prone to shrink more and tightly knitted and woven products are more stable. In knitted fabrics the structure is competitively loose and flexible. Knitting structures are constructed by interlocking the loops. Whereas in weaving yarns are interlaced at right angles to form a stable fabric.[ citation needed ]

Fibers to fabric conversion lead to many mechanical tensions and forces during manufacturing, which includes following steps for fibre to yarn conversion with spinning then fabric with weaving, and knitting. When the products are immersed in water, the water acts as a relaxing medium and all stresses and strains get relaxed and try to come back to its original relaxed state. Even after finishing with sophisticated finishing machines, some residual shrinkage remains, which is carried forward to the garment stage. This residual shrinkage may cause deformity or de-shaping of the products after domestic laundry. There are certain acceptance limits of shrinkage levels for every product. Abnormal shrinkage levels are considered a non-conformity to quality standards. [9]

Test methods

The different test methods are used as per the final destination of the product (Europe, U.S.A., etc.) and the expected washing or laundry methods in practice. Mainly I.S.O. and AATCC standards are used for shrinkage testing. There are few brands which are customizing the test method as per their quality norms. Test Method(s): [10]

Shrinkage measuring template, scale and marker Shrinkage Template.jpg
Shrinkage measuring template, scale and marker

AATCC Test Method 135, dimensional change of fabrics after home laundering Scope: determines the dimensional changes of garments when subjected to home laundering procedures used by consumers. The method is for fabric not yet made into a garment. A sample is marked with benchmarks before home laundering. Then it is laundered 3 times total, then the benchmarks are measured again. Before and after laundering benchmarks are compared.

AATCC Test Method 150, Dimensional Change of Fabrics After Home Laundering Scope: Determines the dimensional changes of garments when subjected to home laundering procedures used by consumers.

Shrinkage resistance and preshrinking

Shrinkage resistance is the term used to describe the ability of a fabric to retain its initial dimensions after undergoing the care process. This quality is closely tied to how the fabric reacts to moisture or heat. Fabrics that shrink during laundering or after exposure to heat may lose their aesthetic appeal and may not be suitable for their intended purpose. Residual shrinkage pertains to any further shrinking that may occur after the initial care cycle. [1]

Preshrinking is a process in which fabric is intentionally shrunk before it is cut and sewn into a garment or other textile product.  [11] [12] Manufacturers use the term "pre-shrunk" to describe fabric or garments that have undergone processing, which is expected to limit shrinkage to less than 3% in either direction during standard wash tests or laundering. [13] Woolen fabrics have a natural tendency to shrink, which can lead to deformation in the final garments. To prevent this, the London shrunk process was applied to specific woolen materials, resulting in fabrics with enhanced dimensional stability and improved resistance to shrinkage. [14]

Shrinkage controlling methods

There are various physical and chemical methods to minimize the residual shrinkage of the fabrics.

See also

Related Research Articles

<span class="mw-page-title-main">Textile</span> Various fiber-based materials

Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, different fabric types, etc. At first, the word "textiles" only referred to woven fabrics. However, weaving is not the only manufacturing method, and many other methods were later developed to form textile structures based on their intended use. Knitting and non-woven are other popular types of fabric manufacturing. In the contemporary world, textiles satisfy the material needs for versatile applications, from simple daily clothing to bulletproof jackets, spacesuits, and doctor's gowns.

<span class="mw-page-title-main">Yarn</span> Long continuous length of interlocked fibres

Yarn is a long continuous length of interlocked fibres, used in sewing, crocheting, knitting, weaving, embroidery, ropemaking, and the production of textiles. Thread is a type of yarn intended for sewing by hand or machine. Modern manufactured sewing threads may be finished with wax or other lubricants to withstand the stresses involved in sewing. Embroidery threads are yarns specifically designed for needlework. Yarn can be made of a number of natural or synthetic materials, and comes in a variety of colors and thicknesses. Although yarn may be dyed different colours, most yarns are solid coloured with a uniform hue.

<span class="mw-page-title-main">Rayon</span> Cellulose-based semi-synthetic fiber

Rayon, also called viscose and commercialised in some countries as sabra silk or cactus silk, is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. Many types and grades of viscose fibers and films exist. Some imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk. It can be woven or knit to make textiles for clothing and other purposes.

<span class="mw-page-title-main">Cellulose acetate</span> Organic compounds which are acetate esters of cellulose

In biochemistry, cellulose acetate refers to any acetate ester of cellulose, usually cellulose diacetate. It was first prepared in 1865. A bioplastic, cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate film replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.

<span class="mw-page-title-main">Dyeing</span> Process of adding color to textile products

Dyeing is the application of dyes or pigments on textile materials such as fibers, yarns, and fabrics with the goal of achieving color with desired color fastness. Dyeing is normally done in a special solution containing dyes and particular chemical material. Dye molecules are fixed to the fiber by absorption, diffusion, or bonding with temperature and time being key controlling factors. The bond between the dye molecule and fiber may be strong or weak, depending on the dye used. Dyeing and printing are different applications; in printing, color is applied to a localized area with desired patterns. In dyeing, it is applied to the entire textile.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile manufacturing is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Sateen</span> Smooth, lustrous satin-weave fabric made of spun fiber, usually cotton, rather than filment yarn

Sateen is a fabric made using a satin weave structure but with spun yarn instead of filament yarn. It is a cotton or other non-silk fabric that has the characteristics of silk satin but is less expensive.

<span class="mw-page-title-main">Sun protective clothing</span> Clothing which blocks light

Sun protective clothing is clothing specifically designed for sun protection and is produced from a fabric rated for its level of ultraviolet (UV) protection. A novel weave structure and denier may produce sun protective properties. In addition, some textiles and fabrics employed in the use of sun protective clothing may be pre-treated with UV-inhibiting ingredients during manufacture to enhance their effectiveness.

<span class="mw-page-title-main">Sanforization</span> Process to preshrink fabric

Sanforization is a treatment for fabrics to reduce shrinkage from washing. The process was patented by Sanford Lockwood Cluett (1874–1968) in 1930. It works by stretching, shrinking and fixing the woven cloth in both length and width before cutting and producing, to reduce the shrinkage which would otherwise occur after washing. The original patent mentioned "goods of cotton, linen, woolen, silk, rayon, and combinations thereof".

<span class="mw-page-title-main">Blocking (textile arts)</span>

In knitting, crochet and other handmade textile arts, blocking is a final stage of handmade textile production that adjusts the shape and size of the finished piece. Not all pieces need blocking; however, blocking is standard for lace work and is not uncommon in sweaters, socks, and other solid projects. Through heat and moisture, blocking sets the stitches and standardizes the final dimensions, and may enhance the drape. Hand manufacture places natural stresses on fabrics that may result in deviations from its intended shape and size. Blocking is only effective on natural fibres but a technique called killing may be used on synthetic fibres to achieve an effect similar to blocking.

<span class="mw-page-title-main">Selvage</span> Narrow edge of a woven fabric parallel to its length

A selvage or selvedge is a "self-finished" edge of a piece of fabric which keeps it from unraveling and fraying. The term "self-finished" means that the edge does not require additional finishing work, such as hem or bias tape, to prevent fraying.

<span class="mw-page-title-main">Units of textile measurement</span> Systems for measuring textiles

Textile fibers, threads, yarns and fabrics are measured in a multiplicity of units.

<span class="mw-page-title-main">Finishing (textiles)</span> Manufacturing process

In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

Many materials have been used to make garments throughout history. Grasses, furs and much more complex and exotic materials have been used. Cultures like the Arctic Circle, make their wardrobes out of prepared and decorated furs and skins.[1] Different cultures have added cloth to leather and skins as a way to replace real leather. A wide range of fibers, including natural, cellulose, and synthetic fibers, can be used to weave or knit cloth. From natural fibers like cotton and silk to synthetic ones like polyester and nylon, most certainly reflects culture.

Colour fastness is a term—used in the dyeing of textile materials—that characterizes a material's colour's resistance to fading or running. Colour fastness is the property of dyes and it is directly proportional to the binding force between photochromic dye and the fibre. The colour fastness may also be affected by processing techniques and choice of chemicals and auxiliaries.

Wet Processing Engineering is one of the major streams in Textile Engineering or Textile manufacturing which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

Compaction (compacting) is a finishing process used to minimize shrinking in textiles. Textile products that are loosely woven or knitted shrink more, whereas tightly knitted and woven products are more stable. The structure of knitted fabrics is competitively loose and flexible. Compaction, like sanforization for woven fabric, is intended to reduce shrinkage in tube and open width Knitted textiles.

<span class="mw-page-title-main">Textile testing</span> Process of measuring the properties and performance of textiles

Textile testing is the process of measuring the properties and performance of textile materials—textile testing includes physical and chemical testing of raw materials to finished products.

The London shrunk, or London shrinkage, process was an 18th-century textile finishing process designed to preshrink wool fabrics and minimize their tendency to shrink before being used for making garments. When compared to the traditional steam shrinking method of controlling shrinkage, London shrinkage provided more permanent results in terms of reducing the likelihood of fabric shrinkage. London shrunk was found to be effective for fine worsteds, it was not typically used for woolens.

References

  1. 1 2 Kadolph, Sara J. (2007). Textiles. Internet Archive. Upper Saddle River, N.J. : Pearson Prentice Hall. p. 29. ISBN   978-0-13-118769-6.
  2. Saville, B.P. (1999). "Dimensional stability". Physical Testing of Textiles. pp. 168–183. doi:10.1533/9781845690151.168. ISBN   978-1-85573-367-1.
  3. 1 2 Ng, S.F.; Hui, C.L.; Ip, C. (2012). "Dimensional stability of fabrics: Resistance to shrinkage and other dimensional changes". Understanding and Improving the Durability of Textiles. pp. 59–69. doi:10.1533/9780857097644.1.59. ISBN   978-0-85709-087-4.
  4. Onal, Levent; Candan, Cevza (March 2003). "Contribution of Fabric Characteristics and Laundering to Shrinkage of Weft Knitted Fabrics". Textile Research Journal. 73 (3): 187–191. doi:10.1177/004051750307300301. S2CID   137726313.
  5. "AATCC Test Methods, Technical Manual & Standards". AATCC Online. Retrieved 21 January 2019.
  6. "LP1 Home Laundering: Machine Washing". members.aatcc.org. Retrieved 21 January 2019.
  7. Judging Fabric Quality. U.S. Government Printing Office. 1942. p. 19.
  8. Inspection of Textiles. War Department. 1940. p. 38.
  9. "A guide to improved shrinkage performance of cotton fabrics" (PDF). Importer Support Program. Cotton Incorporated. 2004. ISP 1009.
  10. "AATCC, ISO and CAN/CGSB 58 Dimensional Change/ Stability (Shrinkage) Test". www.manufacturingsolutionscenter.org. Retrieved 21 January 2019.
  11. Lampe, Clotilde; Yurick, Clotilde (2004). Clotilde's Sew Smart. DRG Wholesale. pp. 1–6. ISBN   978-0-9748217-0-2.
  12. Stauffer, Jeanne (2004). Sewing Smart with Fabric. DRG Wholesale. p. 89. ISBN   978-1-59217-018-0.
  13. Picken, Mary Brooks (1999). A dictionary of costume and fashion : historic and modern : with over 950 illustrations. Internet Archive. Mineola, NY : Dover Publications. p. 263. ISBN   978-0-486-40294-9.
  14. Panda, H. (2010-10-05). The Complete Book on Textile Processing and Silk Reeling Technology: Silk Reeling, Silk Reeling Methods, Silk Reeling Process, Sericulture, Textile Processing and Silk Reeling, Silk Reeling Industry, Sericulture Industry in India, Silk Textile Industry, Silk Reeling Machine, Profits in Silk Reeling, Silk Reeling Unit, Silk as Textile Fibre, Fabric Varieties, Chemical Modification of Textile Celluloses, Silk Reeling Technology. ASIA PACIFIC BUSINESS PRESS Inc. p. 84. ISBN   978-81-7833-135-5.
  15. "ASTM D3776 / D3776M - 09a(2013) Standard Test Methods for Mass Per Unit Area (Weight) of Fabric". www.astm.org. Retrieved 2020-09-08.
  16. "Global Urea Formaldehyde Resin Market 2025 : Company and Financial Overview, Product Portfolio, Business Strategies, and Recent Developments – thebusinesstactics.com". Archived from the original on 2018-08-07. Retrieved 2018-08-07.
  17. "Why Clothes Shrink". NPR .
  18. "Ginetex Switzerland :: LABELLING :: Textile care labelling :: Care symbols :: Professional textile care". www.sartex.ch. Archived from the original on 28 May 2013. Retrieved 11 January 2022.