Dimethylcadmium

Last updated
Dimethylcadmium
Dimethylcadmium-3D-vdW.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.324 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-055-4
PubChem CID
UNII
  • InChI=1S/2CH3.Cd/h2*1H3;
    Key: KVVGSXJGEUULNM-UHFFFAOYSA-N
  • C[Cd]C
Properties
C2H6Cd
Molar mass 142.484 g·mol−1
AppearanceColorless liquid
Odor Foul; unpleasant; metallic; disagreeable; characteristic
Density 1.985 g/mL
Melting point −4.5 °C (23.9 °F; 268.6 K)
Boiling point 106 °C (223 °F; 379 K)
Reacts with water
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Extremely toxic, reacts with water to release methane
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg
Danger
H225, H250, H252, H260, H301, H330, H350, H360
P101, P102, P103, P222, P231, P301+P310, P303+P361+P353, P305+P351+P338, P403+P233, P422, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
4
4
2
W
Flash point 18 °C (64 °F; 291 K)
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dimethylcadmium is the organocadmium compound with the formula Cd(CH3)2. It is a colorless, highly toxic liquid that fumes in air. It is a linear molecule with C-Cd bond lengths of 213 pm. [1] The compound finds limited use as a reagent in organic synthesis and in metalorganic chemical vapor deposition (MOCVD). It has also been used in the synthesis of cadmium selenide nanoparticles, although efforts have been made to replace it in this capacity due to its toxicity. [2]

Dimethylcadmium is prepared by treating cadmium dihalides with methyl Grignard reagents or methyllithium. [3]

CdBr2 + 2 CH3MgBr → Cd(CH3)2 + 2 MgBr2

The same method was used in the first preparation of this compound. [4]

Dimethylcadmium is a weak Lewis acid, forming a labile adduct with diethyl ether. A yellow, air-sensitive adduct is formed with 2,2'-bipyridine. [3]

Related Research Articles

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Nickel(II) chloride</span> Chemical compound

Nickel(II) chloride (or just nickel chloride) is the chemical compound NiCl2. The anhydrous salt is yellow, but the more familiar hydrate NiCl2·6H2O is green. Nickel(II) chloride, in various forms, is the most important source of nickel for chemical synthesis. The nickel chlorides are deliquescent, absorbing moisture from the air to form a solution. Nickel salts have been shown to be carcinogenic to the lungs and nasal passages in cases of long-term inhalation exposure.

<span class="mw-page-title-main">Trimethylaluminium</span> Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive toward water.

<span class="mw-page-title-main">Vanadium oxytrichloride</span> Chemical compound

Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This yellow distillable liquid hydrolyzes readily in air. It is an oxidizing agent. It is used as a reagent in organic synthesis. Samples often appear red or orange owing to an impurity of vanadium tetrachloride.

Vanadium tetrachloride is the inorganic compound with the formula VCl4. This reddish-brown liquid serves as a useful reagent for the preparation of other vanadium compounds.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Sulfur tetrafluoride</span> Chemical compound

Sulfur tetrafluoride is the chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous HF upon exposure to water or moisture. Despite these unwelcome characteristics, this compound is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

<span class="mw-page-title-main">Organocadmium chemistry</span>

Organocadmium chemistry describes the physical properties, synthesis, reactions, and use of organocadmium compounds, which are organometallic compounds containing a carbon to cadmium chemical bond. Cadmium shares group 12 with zinc and mercury and their corresponding chemistries have much in common. The synthetic utility of organocadmium compounds is limited.

<span class="mw-page-title-main">Copper(I) bromide</span> Chemical compound

Copper(I) bromide is the chemical compound with the formula CuBr. This diamagnetic solid adopts a polymeric structure akin to that for zinc sulfide. The compound is widely used in the synthesis of organic compounds and as a lasing medium in copper bromide lasers.

<span class="mw-page-title-main">(Benzylideneacetone)iron tricarbonyl</span> Chemical compound

(Benzylideneacetone)iron tricarbonyl is the organoiron compound with the formula (C6H5CH=CHC(O)CH3)Fe(CO)3. It is a reagent for transferring the Fe(CO)3 unit. This red-colored compound is commonly abbreviated (bda)Fe(CO)3.

<span class="mw-page-title-main">Triruthenium dodecacarbonyl</span> Chemical compound

Triruthenium dodecacarbonyl is the chemical compound with the formula Ru3(CO)12. Classified as metal carbonyl cluster, it is a dark orange-colored solid that is soluble in nonpolar organic solvents. The compound serves as a precursor to other organoruthenium compounds.

<span class="mw-page-title-main">Bis(trimethylsilyl)sulfide</span> Chemical compound

Bis(trimethylsilyl) sulfide is the chemical compound with the formula ((CH3)3Si)2S. Often abbreviated (tms)2S, this colourless, vile-smelling liquid is a useful aprotic source of "S2−" in chemical synthesis.

<span class="mw-page-title-main">Dimethylzinc</span> Chemical compound

Dimethylzinc, also known as zinc methyl, DMZ, or DMZn, is an organozinc compound with the chemical formula Zn(CH3)2. It belongs to the large series of similar compounds such as diethylzinc.

Organorhenium chemistry describes the compounds with Re−C bonds. Because rhenium is a rare element, relatively few applications exist, but the area has been a rich source of concepts and a few useful catalysts.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal with anionic bis(trimethylsilyl)amide ligands and are part of a broader category of metal amides.

<span class="mw-page-title-main">(Trimethylsilyl)methyllithium</span> Chemical compound

(Trimethylsilyl)methyllithium is classified both as an organolithium compound and an organosilicon compound. It has the empirical formula LiCH2Si(CH3)3, often abbreviated LiCH2tms. It crystallizes as the hexagonal prismatic hexamer [LiCH2tms]6, akin to some polymorphs of methyllithium. Many adducts have been characterized including the diethyl ether complexed cubane [Li43-CH2tms)4(Et2O)2] and [Li2(μ-CH2tms)2(tmeda)2].

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +6, +4, and +2 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. Tetrathioperrhenate anion [ReS4] is possible.

References

  1. Felix Hanke; Sarah Hindley; Anthony C. Jones; Alexander Steiner (2016). "The Solid State Structures of the High and Low Temperature Phases of Dimethylcadmium". Chemical Communications . 52 (66): 10144–10146. doi:10.1039/c6cc05851e. PMID   27457504.
  2. Julia Hambrock; Alexander Birkner; Roland A. Fischer (2001). "Synthesis of CdSe nanoparticles using various organometallic cadmium precursors". Journal of Materials Chemistry . 11 (12): 3197–3201. doi:10.1039/B104231A.
  3. 1 2 Douglas F. Foster; David J. Cole-Hamilton (1997). "Electronic Grade Alkyls of Group 12 and 13 Elements". Inorganic Syntheses. Vol. 31. pp. 21–66. doi:10.1002/9780470132623.ch7. ISBN   9780470132623.
  4. Erich Krause (1917). "Einfache Cadmiumdialkyle (I. Mitteilung über organische Cadmium-Verbindungen)". Berichte der deutschen chemischen Gesellschaft . 50 (2): 1813–1822. doi:10.1002/cber.19170500292.