Dynamic positioning

Last updated
Offshore support vessel Toisa Perseus with, in the background, the fifth-generation deepwater drillship Discoverer Enterprise, over the Thunder Horse Oil Field. Both are equipped with DP systems. Toisa Perseus&Discoverer Enterprise.jpg
Offshore support vessel Toisa Perseus with, in the background, the fifth-generation deepwater drillship Discoverer Enterprise , over the Thunder Horse Oil Field. Both are equipped with DP systems.

Dynamic positioning (DP) is a computer-controlled system to automatically maintain a vessel's position and heading by using its own propellers and thrusters. Position reference sensors, combined with wind sensors, motion sensors and gyrocompasses, provide information to the computer pertaining to the vessel's position and the magnitude and direction of environmental forces affecting its position. Examples of vessel types that employ DP include ships and semi-submersible mobile offshore drilling units (MODU), oceanographic research vessels, cable layer ships and cruise ships.

Contents

The computer program contains a mathematical model of the vessel that includes information pertaining to the wind and current drag of the vessel and the location of the thrusters. This knowledge, combined with the sensor information, allows the computer to calculate the required steering angle and thruster output for each thruster. This allows operations at sea where mooring or anchoring is not feasible due to deep water, congestion on the sea bottom (pipelines, templates) or other problems.

Dynamic positioning may either be absolute in that the position is locked to a fixed point over the bottom, or relative to a moving object like another ship or an underwater vehicle. One may also position the ship at a favorable angle towards wind, waves and current, called weathervaning.

Dynamic positioning is used by much of the offshore oil industry, for example in the North Sea, Persian Gulf, Gulf of Mexico, West Africa, and off the coast of Brazil. There are currently more than 1800 DP ships. [1]

History

Dynamic positioning began in the 1960s for offshore drilling. With drilling moving into ever deeper waters, Jack-up barges could not be used any more, and anchoring in deep water was not economical.

As part of Project Mohole, in 1961 the drillship Cuss 1 was fitted with four steerable propellers. The Mohole project was attempting to drill to the Moho, which required a solution for deep water drilling. It was possible to keep the ship in position above a well off La Jolla, California, at a depth of 948 meters.

After this, off the coast of Guadalupe, Mexico, five holes were drilled, the deepest at 183 m (601 ft) below the sea floor in 3,500 m (11,700 ft) of water, while maintaining a position within a radius of 180 meters. The ship's position was determined by radar ranging to buoys and sonar ranging from subsea beacons.

Whereas the Cuss 1 was kept in position manually, later in the same year Shell launched the drilling ship Eureka that had an analogue control system interfaced with a taut wire, making it the first true DP ship. [2]

While the first DP ships had analogue controllers and lacked redundancy, since then vast improvements have been made. Besides that, DP nowadays is not only used in the oil industry, but also on various other types of ships. In addition, DP is not limited to maintaining a fixed position any more. One of the possibilities is sailing an exact track, useful for cablelay, pipelay, survey and other tasks.

Comparison between position-keeping options

Other methods of position-keeping are the use of an anchor spread and the use of a jack-up barge. All have their own advantages and disadvantages.

Comparison of position-keeping options [2]
Jack-up bargeAnchoringDynamic positioning
Advantages
  • No complex systems with thrusters, extra generators and controllers.
  • No chance of running off position by system failures or blackouts.
  • No underwater hazards from thrusters.
  • No complex systems with thrusters, extra generators and controllers.
  • No chance of running off position by system failures or blackouts.
  • No underwater hazards from thrusters.
  • Maneuverability is excellent; it is easy to change position.
  • No anchor handling tugs are required.
  • Not dependent on water depth.
  • Quick set-up.
  • Not limited by obstructed seabed.
Disadvantages
  • No maneuverability once positioned.
  • Limited to water depths of 175 meters.
  • Limited maneuverability once anchored.
  • Anchor handling tugs are required.
  • Less suitable in deep water.
  • Time to anchor out varies from several hours to several days.
  • Limited by obstructed seabed (pipelines, seabed).
  • Complex systems with thrusters, extra generators and controllers.
  • High initial costs of installation.
  • High fuel costs.
  • Chance of running off position in case of strong currents or winds, or due to system failures or blackouts.
  • Underwater hazards from thrusters for divers and ROVs.
  • Higher maintenance of the mechanical systems.

Although all methods have their own advantages, dynamic positioning has made many operations possible that were not feasible before.

The costs are falling due to newer and cheaper technologies, and the advantages are becoming more compelling as offshore work enters ever deeper water and the environment (coral) is given more respect. With container operations, crowded ports can be made more efficient by quicker and more accurate berthing techniques. Cruise ship operations benefit from faster berthing and non-anchored "moorings" off beaches or inaccessible ports.

Applications

SBX underway Sbx underway.jpg
SBX underway

Important applications include:

Scope

A ship can be considered to have six degrees of freedom in its motion, i.e., it can translate and rotate on three perpendicular axes.

Three of these involve translation:

and the other three rotation:

Dynamic positioning is concerned primarily with control of the ship in the horizontal plane, i.e. the translation along the two horizontal axes (surge and sway) and rotation on the vertical axis (yaw).

Requirements

A ship that is to be used for DP requires:

For most applications, the position reference systems and thrust elements must be carefully considered when designing a DP ship. In particular, for good control of position in adverse weather, the thrust capability of the ship in three axes must be adequate.

Maintaining a fixed position is particularly difficult in polar conditions because ice forces can change rapidly. Ship-borne ice detection and mitigation is not sufficiently developed to predict these forces, but may be preferable to sensors placed by helicopter. [3]

Positioning systems

There are several means to determine a ship's position at sea. Most traditional methods used for ships navigation are not accurate enough for some modern requirements. For that reason, several positioning systems have been developed during the past decades. Producers of DP systems are: Marine Technologies LLC, Kongsberg Maritime, Navis Engineering Oy, GE, SIREHNA, Wärtsilä (ex L-3), MT-div. Chouest,[ check spelling ] Rolls-Royce plc, Praxis Automation Technology, Brunvoll AS. The term digital anchor has been used to describe such dynamic positioning systems. [4] . The applications and availability depends on the type of work and water depth. The most common position reference systems (PRS) and position measuring systems (PME) are:

GPS satellite in orbit GPS Satellite NASA art-iif.jpg
GPS satellite in orbit
Light taut wire on the HOS Achiever Light Taut Wire.JPG
Light taut wire on the HOS Achiever

Heading systems

More advanced methods are:

Other sensors

Besides position and heading, other variables are fed into the DP system through sensors:

Control systems

Block diagram of control system Control-Kalman.svg
Block diagram of control system

In the beginning PID controllers were used and today are still used in the simpler DP systems. But modern controllers use a mathematical model of the ship that is based on a hydrodynamic and aerodynamic description concerning some of the ship's characteristics such as mass and drag. Of course, this model is not entirely correct. The ship's position and heading are fed into the system and compared with the prediction made by the model. This difference is used to update the model by using Kalman filtering technique. For this reason, the model also has input from the wind sensors and feedback from the thrusters. This method even allows not having input from any PRS for some time, depending on the quality of the model and the weather. This process is known as dead reckoning.

The accuracy and precision of the different PRSs is not the same. While a DGPS has a high accuracy and precision, a USBL can have a much lower precision. For this reason, the PRS's are weighted. Based on variance a PRS receives a weight between 0 and 1.

Power and propulsion systems

North Sea Giant North Sea Giant offshore installation vessel.jpg
North Sea Giant

To maintain position azimuth thrusters (electric, L-drive or Z-drive) bow thrusters, stern thrusters, water jets, rudders and propellers are used. DP ships are usually at least partially diesel-electric, as this allows a more flexible set-up and is better able to handle the large changes in power demand, typical for DP operations. These fluctuations may be suitable for hybrid operation. An LNG-powered platform supply vessel started operation in 2016 with a 653 kWh/1600 kW battery acting as spinning reserve during DP2, saving 15-30% fuel. [11] The 154-meter North Sea Giant has combined 3 powerpacks, switchboards and 2 MWh batteries to operate in DP3 using only one engine, [12] [13] keeping the engine load between 60% and 80%. [14]

The set-up depends on the DP class of the ship. A Class 1 can be relatively simple, whereas the system of a Class 3 ship is quite complex. On Class 2 and 3 ships, all computers and reference systems should be powered through a UPS.

International Maritime Organization class requirements

Based on IMO (International Maritime Organization) publication 645 [15] the Classification Societies have issued rules for Dynamic Positioned Ships described as Class 1, Class 2 and Class 3.

Classification Societies have their own Class notations:

Description IMO
Equipment Class
LR
Equipment Class
DNV
Equipment Class
GL
Equipment Class
ABS
Equipment Class
NK
Equipment Class
BV
Equipment Class
Manual position control and automatic heading control under specified maximum environmental conditions-DP(CM)DYNPOS-AUTS-DPS-0-
Automatic and manual position and heading control under specified maximum environmental conditionsClass 1DP(AM)DYNPOS-AUT & DPS1DP 1DPS-1DPS ADYNAPOS AM/AT
Automatic and manual position and heading control under specified maximum environmental conditions, during and following any single fault excluding loss of a compartment. (Two independent computer systems).Class 2DP(AA)DYNPOS-AUTR & DPS2DP 2DPS-2DPS BDYNAPOS AM/AT R
Automatic and manual position and heading control under specified maximum environmental conditions, during and following any single fault including loss of a compartment due to fire or flood. (At least two independent computer systems with a separate backup system separated by A60 class division).Class 3DP(AAA)DYNPOS-AUTRO & DPS3DP 3DPS-3DPS CDYNAPOS AM/AT RS

DNV rules 2011 Pt6 Ch7 introduced "DPS" series of classification to compete with ABS "DPS" series.

Norwegian Maritime Authority Guidelines

Where IMO leaves the decision of which class applies to what kind of operation to the operator of the DP ship and its client, the Norwegian Maritime Authority(NMA) has specified what Class should be used in regard to the risk of an operation. In the NMA Guidelines and Notes No. 28, enclosure A four classes are defined:

Based on this the type of ship is specified for each operation:

Failure

Loss of position, also known as runoff, can be a threat to safe operations and the environment, including possible loss of life, injury, damage to property or the environment, and loss of reputation and time. Incident records indicate that even vessels with redundant dynamic positioning systems are subject to occasional loss of position, which can be due to human error, procedural failure, dynamic positioning system failures, or bad design. [16]

Dynamic positioning failure results in an inability to maintain position or heading control, and can be a drift off caused by insufficient thrust, or a drive off caused by inappropriate thrust. [16]

Dynamic positioning alarm and runout response for bell divers

The basic response with a closed bell is similar to wet bell, but after stowing umbilicals, the hatch will be sealed so that internal pressure can be retained. The bell will be recovered as rapidly as possible in a red alert, and may be recovered if there is doubt that a yellow alert will be downgraded. [19]

Redundancy

Redundancy is the ability to withstand, while on DP mode, the loss of equipment which is online, without losing position or heading. A single failure can be, amongst others:

For certain operations redundancy is not required. For instance, if a survey ship loses its DP capability, there is normally no risk of damage or injuries. These operations will normally be done in Class 1.

For other operations, such as diving and heavy lifting, there is a risk of damage or injuries. Depending on the risk, the operation is done in Class 2 or 3. This means at least three Position reference systems should be selected. This allows the principle of voting logic, so the failing PRS can be found. For this reason, there are also three DP control computers, three gyrocompasses, three MRU's and three wind sensors on Class 3 ships. If a single fault occurs that jeopardizes the redundancy, i.e., failing of a thruster, generator or a PRS, and this cannot be resolved immediately, the operation should be abandoned as quickly as possible.

To have sufficient redundancy, enough generators and thrusters should be on-line so the failure of one does not result in a loss of position. This is left to the judgment of the DP operator. For Class 2 and Class 3 a Consequence Analysis should be incorporated in the system to assist the DPO in this process.

The redundancy of a DP ship should be judged by a failure mode and effects analysis (FMEA) study and proved by FMEA trials. [20] Besides that, annual trials are done and normally DP function tests are completed prior to each project.

DP operator

The DP operator (DPO) judges whether there is enough redundancy available at any given moment of the operation. IMO issued MSC/Circ.738 (Guidelines for dynamic positioning system (DP) operator training) on 24-06-1996. This refers to IMCA (International Marine Contractors Association) M 117 [21] as acceptable standard.

To qualify as a DP operator the following path should be followed:

  1. a DP Induction course + On-line Examination
  2. a minimum of 60 days seagoing DP familiarisation
  3. a DP Advanced course + On-line Examination
  4. a minimum of 60 days watchkeeping on a DP ship
  5. a statement of suitability by the master of a DP ship

When the watchkeeping is done on a Class 1 DP ship, a limited certificate will be issued; otherwise a full certificate will be issued.

The DP training and certification scheme is operated by The Nautical Institute (NI). The NI issue logbooks to trainees, they accredit training centres and control the issuance of certification.

With ever more DP ships and with increasing manpower demands, the position of DPO is gaining increasing prominence. This shifting landscape led to the creation of The International Dynamic Positioning Operators Association (IDPOA) in 2009. www.dpoperators.org

IDPOA membership is made up of certified DPO's who qualify for fellowship (fDPO), while Members (mDPO) are those with DP experience or who may already be working within the DP certification scheme.

International Marine Contractors Association

The International Marine Contractors Association was formed in April 1995 from the amalgamation of the Dynamic Positioning Vessel Owners Association, founded in 1990, and the International Association of Offshore Diving Contractors, founded in 1972. [22]

While it started with the collection and analysis of DP Incidents, [23] since then it has produced publications on different subjects to improve standards for DP systems. It also works with IMO and other regulatory bodies.

Marine Technology Society Dynamic Positioning Committee

The Marine Technology Society Dynamic Positioning (DP) Committee's mission is to facilitate incident free DP operations through sharing of knowledge. This committee of dedicated volunteers delivers value to the DP community of vessel owners, operators, Marine Class Societies, engineers and regulators through an annual DP Conference, topical workshops and an extensive set of Guidance Documents covering DP Design Philosophy, DP Operations and Professional Development of DP Personnel. In addition, a growing set of unique documents called TECHOP's address specific topics of significant interest and impact. Conference papers are available for download by the public, providing the most comprehensive single source of DP industry technical papers available anywhere.

The DP Guidance documents published by the MTS DP Committee are designed to disseminate the knowledge, methods and unique tools to aid the DP community in achieving incident free DP operations. The documents are free to download from the Committee's website http://dynamic-positioning.com

See also

Related Research Articles

<span class="mw-page-title-main">Remotely operated underwater vehicle</span> A tethered underwater mobile device operated by a remote crew

A remotely operated underwater vehicle (ROUV) or remotely operated vehicle (ROV) is a free-swimming submersible craft used to perform underwater observation, inspection and physical tasks such as valve operations, hydraulic functions and other general tasks within the subsea oil and gas industry, military, scientific and other applications. ROVs can also carry tooling packages for undertaking specific tasks such as pull-in and connection of flexible flowlines and umbilicals, and component replacement.

<span class="mw-page-title-main">Platform supply vessel</span> Ship used to supply offshore platforms

A platform supply vessel (PSV) is a ship specially designed to supply offshore oil and gas platforms and other offshore installations. They typically range from 50 to 100 metres in length and are distinguished by the large open deck area used to store supplies and house equipment and to allow for efficient loading and offloading. The primary function for most of these vessels is logistic support and transportation of goods, tools, equipment, and personnel to and from their destination.

<span class="mw-page-title-main">Diving support vessel</span> Ship used as a floating base for professional diving projects

A diving support vessel is a ship that is used as a floating base for professional diving projects. Basic requirements are the ability to keep station accurately and reliably throughout a diving operation, often in close proximity to drilling or production platforms, for positioning to degrade slowly enough in deteriorating conditions to recover divers without excessive risk, and to carry the necessary support equipment for the mode of diving to be used.

<span class="mw-page-title-main">Azipod</span> Electric drive azimuth thruster

Azipod is a trademarked azimuth thruster pod design, a marine propulsion unit consisting of a fixed pitch propeller mounted on a steerable gondola ("pod") containing the electric motor driving the propeller, allowing ships to be more maneuverable. They were developed in Finland in the late 1980s jointly by Wärtsilä Marine, Strömberg and the Finnish National Board of Navigation.

<span class="mw-page-title-main">Marine salvage</span> Recovering a ship or cargo after a maritime casualty

Marine salvage is the process of recovering a ship and its cargo after a shipwreck or other maritime casualty. Salvage may encompass towing, lifting a vessel, or effecting repairs to a ship. Protecting the coastal environment from oil spillages or other contaminants from a modern ship can also be a motivator, as oil, cargo, and other pollutants can easily leak from a wreck.

Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.

<span class="mw-page-title-main">Salvage diving</span> Diving work associated with the recovery of vehicles, cargo and structures

Salvage diving is the diving work associated with the recovery of all or part of ships, their cargoes, aircraft, and other vehicles and structures which have sunk or fallen into water. In the case of ships it may also refer to repair work done to make an abandoned or distressed but still floating vessel more suitable for towing or propulsion under its own power. The recreational/technical activity known as wreck diving is generally not considered salvage work, though some recovery of artifacts may be done by recreational divers.

HSwMS <i>Belos</i> (A214) Swedish submarine help ship

HSwMS Belos (A214) is a submarine person helping ship in the Swedish Navy's 1st Submarine flotilla. She carries the Submarine Rescue Vehicle URF. She is also capable of carrying the NATO rescue system NSRS. HSwMS Belos is currently [2017] the largest ship in the Swedish Navy. HMS Belos is traditionally the name of the Swedish Navy's submarine rescue vessel and she is the third ship with that name.

International Marine Contractors Association (IMCA) is a leading international trade association for the marine contracting industry. It is a not for profit organisation with members representing the majority of worldwide marine contractors in the oil and gas and renewable energy industries.

An underwater acoustic positioning system is a system for the tracking and navigation of underwater vehicles or divers by means of acoustic distance and/or direction measurements, and subsequent position triangulation. Underwater acoustic positioning systems are commonly used in a wide variety of underwater work, including oil and gas exploration, ocean sciences, salvage operations, marine archaeology, law enforcement and military activities.

<span class="mw-page-title-main">Short baseline acoustic positioning system</span> Class of underwater acoustic positioning systems used to track underwater vehicles and divers

A short baseline (SBL) acoustic positioning system is one of three broad classes of underwater acoustic positioning systems that are used to track underwater vehicles and divers. The other two classes are ultra short baseline systems (USBL) and long baseline systems (LBL). Like USBL systems, SBL systems do not require any seafloor mounted transponders or equipment and are thus suitable for tracking underwater targets from boats or ships that are either anchored or under way. However, unlike USBL systems, which offer a fixed accuracy, SBL positioning accuracy improves with transducer spacing. Thus, where space permits, such as when operating from larger vessels or a dock, the SBL system can achieve a precision and position robustness that is similar to that of sea floor mounted LBL systems, making the system suitable for high-accuracy survey work. When operating from a smaller vessel where transducer spacing is limited, the SBL system will exhibit reduced precision.

<span class="mw-page-title-main">Long baseline acoustic positioning system</span> Class of underwater acoustic positioning systems used to track underwater vehicles and divers

A long baseline (LBL) acoustic positioning system is one of three broad classes of underwater acoustic positioning systems that are used to track underwater vehicles and divers. The other two classes are ultra short baseline systems (USBL) and short baseline systems (SBL). LBL systems are unique in that they use networks of sea-floor mounted baseline transponders as reference points for navigation. These are generally deployed around the perimeter of a work site. The LBL technique results in very high positioning accuracy and position stability that is independent of water depth. It is generally better than 1-meter and can reach a few centimeters accuracy. LBL systems are generally employed for precision underwater survey work where the accuracy or position stability of ship-based positioning systems does not suffice.

<span class="mw-page-title-main">Commercial offshore diving</span> Professional diving in support of the oil and gas industry

Commercial offshore diving, sometimes shortened to just offshore diving, generally refers to the branch of commercial diving, with divers working in support of the exploration and production sector of the oil and gas industry in places such as the Gulf of Mexico in the United States, the North Sea in the United Kingdom and Norway, and along the coast of Brazil. The work in this area of the industry includes maintenance of oil platforms and the building of underwater structures. In this context "offshore" implies that the diving work is done outside of national boundaries. Technically it also refers to any diving done in the international offshore waters outside of the territorial waters of a state, where national legislation does not apply. Most commercial offshore diving is in the Exclusive Economic Zone of a state, and much of it is outside the territorial waters. Offshore diving beyond the EEZ does also occur, and is often for scientific purposes.

<span class="mw-page-title-main">Diving supervisor</span> Professional diving team leader responsible for safety

The diving supervisor is the professional diving team member who is directly responsible for the diving operation's safety and the management of any incidents or accidents that may occur during the operation; the supervisor is required to be available at the control point of the diving operation for the diving operation's duration, and to manage the planned dive and any contingencies that may occur. Details of competence, requirements, qualifications, registration and formal appointment differ depending on jurisdiction and relevant codes of practice. Diving supervisors are used in commercial diving, military diving, public safety diving and scientific diving operations.

A seabed tractor is a type of remotely operated underwater vehicle. They can be used for submarine cable laying or burial of cables or pipelines. This type of vehicle consists of a tracked Crawler excavator device, configured for the task. It is controlled from the vessel by an umbilical cable. Operating seabed tractors is similar to operating Remotely operated underwater vehicles. The seabed tractor operator drives the unit as if on board, using cameras on the unit for visual feedback.

<span class="mw-page-title-main">Surface-supplied diving skills</span> Skills and procedures required for the safe operation and use of surface-supplied diving equipment

Surface supplied diving skills are the skills and procedures required for the safe operation and use of surface-supplied diving equipment. Besides these skills, which may be categorised as standard operating procedures, emergency procedures and rescue procedures, there are the actual working skills required to do the job, and the procedures for safe operation of the work equipment other than diving equipment that may be needed.

The operations manual is the documentation by which an organisation provides guidance for members and employees to perform their functions correctly and reasonably efficiently. It documents the approved standard procedures for performing operations safely to produce goods and provide services. Compliance with the operations manual will generally be considered as activity approved by the persons legally responsible for the organisation.

<span class="mw-page-title-main">Diving team</span> Group of people working together to enhance dive safety and achieve a task

A diving team is a group of people who work together to conduct a diving operation. A characteristic of professional diving is the specification for minimum personnel for the diving support team. This typically specifies the minimum number of support team members and their appointed responsibilities in the team based on the circumstances and mode of diving, and the minimum qualifications for specified members of the diving support team. The minimum team requirements may be specified by regulation or code of practice. Some specific appointments within a professional dive team have defined competences and registration may be required.

<span class="mw-page-title-main">Underwater survey</span> Inspection or measurement in or of an underwater environment

An underwater survey is a survey performed in an underwater environment or conducted remotely on an underwater object or region. Survey can have several meanings. The word originates in Medieval Latin with meanings of looking over and detailed study of a subject. One meaning is the accurate measurement of a geographical region, usually with the intention of plotting the positions of features as a scale map of the region. This meaning is often used in scientific contexts, and also in civil engineering and mineral extraction. Another meaning, often used in a civil, structural, or marine engineering context, is the inspection of a structure or vessel to compare actual condition with the specified nominal condition, usually with the purpose of reporting on the actual condition and compliance with, or deviations from, the nominal condition, for quality control, damage assessment, valuation, insurance, maintenance, and similar purposes. In other contexts it can mean inspection of a region to establish presence and distribution of specified content, such as living organisms, either to establish a baseline, or to compare with a baseline.

References

  1. "What is dynamic positioning?". The Nautical Institute. Archived from the original on 2013-01-25. Retrieved 2013-01-24.
  2. 1 2 Introduction to Dynamic Positioning Archived 2010-06-26 at the Wayback Machine
  3. Wolden, Grete (February 2017). "Forskning: Dynamisk Posisjonering for Arktis: Systemet skal muliggjøre kompliserte operasjoner i is og ekstremvær". Teknisk Ukeblad . Retrieved 2 February 2017.
  4. "Advertisement from Mercury Marine" (PDF). Archived from the original (PDF) on 2015-05-22. Retrieved 2015-05-22.
  5. "IMCA M 141, Guidelines on the Use of DGPS as a Position Reference in DP Control Systems". London: International Marine Contractors Association. October 1997.
  6. "Veripos DP system can be installed with several Augmentation systems as well as GLONASS support, they can disable any satellite or service via Ultra corrections received via Spotbeam or Inmarsat links". Archived from the original on 2006-05-25.
  7. "IMCA M 151, The Basic Principles and Use of Hydroacoustic Position Reference Systems in the Offshore Environment". London: International Marine Contractors Association.
  8. "IMCA M 170, A Review of Marine Laser Positioning Systems".
  9. "IMCA M 174, A Review of the Artemis Mk V Positioning System". London: International Marine Contractors Association.
  10. "RADius relative positioning system". Konsberg Gruppen. 15 August 2011.
  11. Stensvold, Tore (2016-10-11). "Første i verden: Her skal batterier erstatte motor i kritiske situasjoner". Teknisk Ukeblad . Teknisk Ukeblad Media AS. Retrieved 11 October 2016.
  12. Stensvold, Tore (14 March 2018). "Et av verdens mest avanserte skip er bygget om: Sparer 30 prosent drivstoff med batteri". Tu.no (in Norwegian). Teknisk Ukeblad . Retrieved 31 March 2019.
  13. "The Motorship | Giant battery boost for North Sea Shipping". www.motorship.com. Retrieved 31 March 2019.
  14. Førde, Thomas (31 May 2019). "Dette fartøyet sparer penger og kutter CO2 med avansert batterisystem". Tu.no (in Norwegian). Teknisk Ukeblad.
  15. "IMO MSC/Circ.645, Guidelines for vessels with dynamic positioning systems" (PDF). 6 June 1994. Archived from the original (PDF) on 2007-06-10.
  16. 1 2 3 Castro, Alexander (13–14 October 2015). DP Emergency Drills (PDF). Dynamic Positioning Conference. Houston: Marine Technology Society.
  17. CADC Admin (31 October 2012). "Dynamically Positioned Vessel Run-off / Severance of Bell Diver's Umbilical". Canadian Association of Diving Contractors. Retrieved 29 November 2018.
  18. 1 2 Guidance for diving supervisors IMCA D 022, chpt. 11 Surface supplied air diving, sect. 8 Emergency and contingency plans
  19. Guidance for diving supervisors IMCA D 022, chpt. 13 Closed bell diving, sect. 10 Emergency and contingency plans
  20. "IMCA M 166, Guidelines on Failure Modes & Effects Analyses (FMEAs)". London: International Marine Contractors Association.
  21. "IMCA M 117, The training and experience of key DP personnel". London: International Marine Contractors Association.
  22. "Dynamiv positioning - A brief IMCA History" (PDF). London: International Marine Contractors Association. Archived from the original (PDF) on 2006-03-11.
  23. "IMCA M 181, Analysis of Station Keeping Incident Data 1994-2003". London: International Marine Contractors Association.

Sources