Electoral quota

Last updated

In proportional representation systems, an electoral quota is the number of votes a candidate needs to be guaranteed election.

Contents

Admissible quotas

An admissible quota is a quota that is guaranteed to apportion only as many seats as are available in the legislature. Such a quota can be any number between: [1]

Common quotas

There are two commonly-used quotas: the Hare and Droop quotas. The best quota is one that is unbiased in the number of seats it hands out. However, there is a degree of bias produced by the two commonest quotas used under STV. The Hare quota sometimes awards a majority of seats to a party with less than a majority of votes in a district; Droop quota on the other hand, tends to be biased towards larger parties, producing under-representation of small parties. [2] [3] The Droop quota guarantees that a party that wins a majority of votes in a district will win at least half of the seats. [4] [5]

Hare quota

The Hare quota (also known as the simple quota or Hamilton's quota) is the most common the largest remainder method of party-list proportional representation. It was used by Thomas Hare in his first proposals for STV. It is given by the expression:

Specifically, the Hare quota is unique in being unbiased in the number of seats it hands out. This makes it more proportional than the Droop quota (which is biased towards larger parties). [2]

Droop quota

The Droop quota is used in most single transferable vote (STV) elections today and is occasionally used in elections held under the largest remainder method of party-list proportional representation (list PR). It is given by the expression: [1] [6]

It was first proposed in 1868 by the English lawyer and mathematician Henry Richmond Droop (1831–1884) as a replacement for the earlier Hare quota.

Today the Droop quota is used in almost all STV elections, including those in India, the Republic of Ireland, Northern Ireland, Malta, and Australia.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Proportional representation</span> Voting system that makes outcomes proportional to vote totals

Proportional representation (PR) refers to any type of electoral system under which subgroups of an electorate are reflected proportionately in the elected body. The concept applies mainly to political divisions among voters. The essence of such systems is that all votes cast – or almost all votes cast – contribute to the result and are effectively used to help elect someone – not just a bare plurality or (exclusively) the majority – and that the system produces mixed, balanced representation reflecting how votes are cast.

<span class="mw-page-title-main">Party-list proportional representation</span> Family of voting systems

Party-list proportional representation (list-PR) is a subset of proportional representation electoral systems in which multiple candidates are elected through their position on an electoral list. They can also be used as part of mixed-member electoral systems.

<span class="mw-page-title-main">Single transferable vote</span> Multi-winner electoral system

The single transferable vote (STV), sometimes known as proportional ranked choice voting (P-RCV), is a multi-winner electoral system in which each voter casts a single vote in the form of a ranked-choice ballot. Voters have the option to rank candidates, and their vote may be transferred according to alternate preferences if their preferred candidate is eliminated or elected with surplus votes, so that their vote is used to elect someone they prefer over others in the running. STV aims to approach proportional representation based on votes cast in the district where it is used, so that each vote is worth about the same as another.

In the study of electoral systems, the Droop quota is the minimum number of votes needed for a party or candidate to guarantee they will win at least one seat in a legislature.

The D'Hondt method, also called the Jefferson method or the greatest divisors method, is an apportionment method for allocating seats in parliaments among federal states, or in proportional representation among political parties. It belongs to the class of highest-averages methods. The D'Hondt method reduces compared to ideal proportional representation somewhat the political fragmentation for smaller electoral district sizes, where it favors larger political parties over small parties.

The Webster method, also called the Sainte-Laguë method, is a highest averages apportionment method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system. The Sainte-Laguë method shows a more equal seats-to-votes ratio for different sized parties among apportionment methods.

In mathematics, economics, and social choice theory, the highest averages method, also called the divisor method, is an apportionment algorithm most well-known for its common use in proportional representation. Divisor algorithms seek to fairly divide a legislature between several groups, such as political parties or states. More generally, divisor methods are used for rounding a set of real numbers to a whole number of objects.

The largest remainders methods are one way of allocating seats proportionally. They contrast with the more popular highest averages methods, which are generally preferred by social choice theorists.

In the study of apportionment, the Harequota is the number of voters represented by each legislator under a system of proportional representation. In these voting systems, the quota is the number of votes that guarantees a candidate, or a party in some cases, captures a seat. The Hare quota is the total number of votes divided by the number of seats to be filled.

The single transferable vote (STV) is a semi-proportional representation system that elects multiple winners. It is one of several ways of choosing winners from ballots that rank candidates by preference. Under STV, an elector's vote is initially allocated to their first-ranked candidate. Candidates are elected (winners) if their vote tally reaches quota. After this first count, if seats are still open, surplus votes—those in excess of an electoral quota—are transferred from winners to the remaining candidates (hopefuls) according to the surplus ballots' next usable back-up preference.

The Huntington–Hill method is a highest averages method for assigning seats in a legislature to political parties or states. Since 1941, this method has been used to apportion the 435 seats in the United States House of Representatives following the completion of each decennial census.

Schulze STV is a draft single transferable vote (STV) ranked voting system designed to achieve proportional representation. It was invented by Markus Schulze, who developed the Schulze method for resolving ties using a Condorcet method. Schulze STV is similar to CPO-STV in that it compares possible winning candidate pairs and selects the Condorcet winner. It is not used in parliamentary elections.

In elections that use the single transferable vote (STV) method, quotas are used (a) for the determination of candidates considered elected; and (b) for the calculation of surplus votes to be redistributed. Two quotas in common use are the Hare quota and the Droop quota. The largest remainder method of party-list proportional representation can also use Hare quotas or Droop quotas.

<span class="mw-page-title-main">Electoral system</span> Method by which voters make a choice between options

An electoral system or voting system is a set of rules that determine how elections and referendums are conducted and how their results are determined. Electoral systems are used in politics to elect governments, while non-political elections may take place in business, non-profit organisations and informal organisations. These rules govern all aspects of the voting process: when elections occur, who is allowed to vote, who can stand as a candidate, how ballots are marked and cast, how the ballots are counted, how votes translate into the election outcome, limits on campaign spending, and other factors that can affect the result. Political electoral systems are defined by constitutions and electoral laws, are typically conducted by election commissions, and can use multiple types of elections for different offices.

Mathematics of apportionment describes mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world.

House monotonicity is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states. The property says that, if the number of seats in the "house" increases, and the method is re-activated, then no state should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.

State-population monotonicity is a property of apportionment methods, which are methods of allocating seats in a parliament among federal states or political parties. The property says that if the population of State A increases faster than that of State B, then State A should not lose any seats to State B. Apportionment methods violating this rule are called population paradoxes.

Seat bias is a property describing methods of apportionment. These are methods used to allocate seats in a parliament among federal states or among political parties. A method is biased if it systematically favors small parties over large parties, or vice versa. There are several mathematical measures of bias, which can disagree slightly.

Vote-ratio monotonicity (VRM) is a property of apportionment methods, which are methods of allocating seats in a parliament among political parties. The property says that, if the ratio between the number of votes won by party A to the number of votes won by party B increases, then it should NOT happen that party A loses a seat while party B gains a seat.

Balance or balancedness is a property of apportionment methods, which are methods of allocating identical items between among agens, such as dividing seats in a parliament among political parties or federal states. The property says that, if two agents have exactly the same entitlements, then the number of items they receive should differ by at most one. So if two parties win the same number of votes, or two states have the same populations, then the number of seats they receive should differ by at most one.

References

  1. 1 2 Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Quota Methods of Apportionment: Divide and Rank", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 95–105, doi:10.1007/978-3-319-64707-4_5, ISBN   978-3-319-64707-4 , retrieved 2024-05-10
  2. 1 2 Lijphart, Arend (1994). "Appendix A: Proportional Representation Formulas". Electoral Systems and Party Systems: A Study of Twenty-Seven Democracies, 1945-1990. Oxford University Press.
  3. Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Favoring Some at the Expense of Others: Seat Biases", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 127–147, doi:10.1007/978-3-319-64707-4_7, ISBN   978-3-319-64707-4 , retrieved 2024-05-10
  4. Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote . New Haven: Yale University Press. ISBN   0-300-02724-9.
  5. Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Tracing Peculiarities: Vote Thresholds and Majority Clauses", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 207–223, doi:10.1007/978-3-319-64707-4_11, ISBN   978-3-319-64707-4 , retrieved 2024-05-10
  6. Woodall, Douglass. "Properties of Preferential Election Rules". Voting matters (3).