Electrogastrogram

Last updated
Electrogastrogram
Purposedetects, analyzes and records the myoelectrical signals that are generated by the smooth muscle activity of the stomach, intestines and other smooth muscle containing organs.

An electrogastrogram (EGG) is a computer generated graphic produced by electrogastrography, which detects, analyzes and records the myoelectrical signal generated by the movement of the smooth muscle of the stomach, intestines and other smooth muscle containing organs. An electrogastroenterogram or electroviscerogram (or gastroenterogram) is a similar display of the recording of myoelectrical activity of gastrointestinal or other organs which are able to generate myoelectrical activity.

Contents

These names are made of different parts: electro, because it is related to electrical activity, gastro, Greek for stomach, entero or viscero, Greek for intestines, gram, a Greek root meaning "to write".

An electrogastrogram (EGG), electroviscerogram (EVG) or a gastroenterogram are similar in principle to an electrocardiogram (ECG) in that sensors on the skin detect electrical signals indicative of muscular activity within. Where the electrocardiogram detects muscular activity in various regions of the heart, the electrogastrogram or electroviscerogram detects the myoelectrical activity of the wave-like contractions of the stomach, intestines or other organs (peristalsis).

Walter C. Alvarez discovered the EGG signal and pioneered early studies of electrogastrography in 1921–22. [1]

Physiological basis

Motility of gastrointestinal tract (GI tract) results from coordinated contractions of smooth muscle, which in turn derive from two basic patterns of electrical activity across the membranes of smooth muscle cells—slow waves and action potentials. [2] Slow waves are initiated by pacemakers—the interstitial cells of Cajal (ICC). Slow wave frequency varies in the different organs of the GI tract and is characteristic for that organ. They set the maximum frequency at which the muscle can contract:

The electrical activity or more properly termed myoelectrical activity of the GI tract can be subdivided into two categories: electrical control activity (ECA) and electrical response activity (ERA). ECA is characterized by regularly recurring electrical potentials, originating in the gastric pacemaker located in the body of stomach. The slow waves are not a direct reason of peristalsis of a GI tract, but a correlation between deviations of slow waves from norm and motility abnormalities however is proved. [5]

Cutaneous electrogastrography

Recording of the Electrogastrogram can be made from either the gastrointestinal surface mucosa, serosa, or the external skin surface. The cutaneous electrogastrography provides an indirect representation of the electrical activity, that has been demonstrated in numerous studies to exactly correspond to simultaneous recordings of the mucosa or serosa. Since it is much easier to perform, the cutaneous electrogastrography has been used most frequently.[ citation needed ]

Several EGG signals may be recorded from various standardized positions on the abdominal wall, However, for maximal accuracy and analysis it is important to select the one channel with the highest amplitude. Each channel usually consists of three Ag-AgCl electrodes. [6] Recordings are made both fasting (usually 10–30 minutes) and after a stimulation meal (usually 30–60 minutes) with the patient lying quietly. The stimulation meal may vary but the most commonly used medium is room temperature water. Deviations from the normal frequency may be referred to as alterations in the gastric myoelectrical activity (GMA) or intestinal myoelectrical activity(IMA), These include: 1) bradygastria GMA, 2) tachygastria GMA, or 3) 3 cycle per minute hypernormal GMA or hyponormal GMA .

In normal individuals the power of the electrical signals increases after the meal. In patients with abnormalities of stomach and/or gastrointestinal motility, the rhythm often is irregular or there is no post-stimulation meal increase in electrical power.

Bradygastria, normogastria and tachygastria

Terms bradygastria and tachygastria are used at the description of deviations of frequency of an electric signal from slow waves are initiated by pacemaker in the stomach from normal frequency of 3 cycles per minute.[ citation needed ]

A bradygastria is defined, as decreased rate of myoelectrical activity in the stomach, as less than 2.5 cycles per minute for at least 1 minute.

A tachygastria is defined, as increased rate of myoelectrical activity in the stomach, as more than 3.75 cycles per minute for at least 1 minute.

A bradygastria and tachygastria may be associated with nausea, gastroparesis, irritable bowel syndrome, and functional dyspepsia. [7]

CPT and HCPCS codes for electrogastrography

There are following Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) codes (maintained by the American Medical Association) for cutaneous electrogastrography: [8]

CPT/HCPCS-codeProcedure
91132Electrogastrography, diagnostic, transcutaneous
91133Electrogastrography, diagnostic, transcutaneous; with provocative testing

Electrogastroenterography

An electrogastroenterography (EGEG) is based that different organs of a GI tract give different frequency slow wave.

Organ of gastrointestinal tractInvestigated range (Hz)Frequency number (i)
Large intestine 0.01 – 0.035
Stomach 0.03 – 0.071
Ileum 0.07 – 0.134
Jejunum 0.13 – 0.183
Duodenum 0.18 – 0.252

EGEG electrodes are as much as possible removed from a stomach and an intestines—usually three electrodes are placed on the extremities. It allows to receive stabler and comparable results.

Computer analysis

3D graph of a human gastroenterogramm: electrical signals from GI smooth muscle (in mV) on the vertical y-axis; from left to right on the x-axis: large intestine, stomach, ileum, jejunum, duodenum. The time (in minutes) is drawn on the z-axis. Example of 3D gastroenterogramm.jpg
3D graph of a human gastroenterogramm: electrical signals from GI smooth muscle (in μV) on the vertical y-axis; from left to right on the x-axis: large intestine, stomach, ileum, jejunum, duodenum. The time (in minutes) is drawn on the z-axis.

An electrogastroenterography analysis program calculate [9]

where S(n) – spectral components in the rank from sti to fini (defined by received investigated range of this organ of GI tract) by Discrete Fourier transform of the electric signal from GI tract.

EGEG parameters for normal patients: [9]

Organ of gastrointestinal tractElectric activity P(i)/PSRhythm factor Kritm(i)P(i)/P(i+1)
Stomach22.4±11.24.85±2.110.4±5.7
Duodenum2.1±1.20.9±0.50.6±0.3
Jejunum3.35±1.653.43±1.50.4±0.2
Ileum8.08±4.014.99±2.50.13±0.08
Large intestine64.04±32.0122.85±9.8 

Psychological applications

Psychologists have performed psychophysiological studies to see what happens in the body during affective experiences. Electrogastrograms have recently been used to test physiological arousal, which was already determined by measures such as heart rate, electrodermal skin responses, and changes in hormone levels in saliva. [10]

Currently, a pattern of interest to psychologists is an increase in bradygastria, which is when electrical activity in the stomach drops to below 2 cpm resulting in a slower stomach rhythm, when exposed to disgusting stimuli, which may be a precursor to nausea and vomiting, both physiological responses to disgust. [11] In this study, the presence of bradygastria was able to predict trait and state disgust, which no other physiological measure used in the study was able to detect. [11] This abnormal myoelectrical activity is usually combined with other precursors to nausea and vomiting, such as increased salivary production, which further supports the idea that these rhythms show early signs of nausea and vomiting. These reactions are viewed as a way in which the body rejects unhealthy foods, [11] which is linked with the view that disgust is an evolutionary adaptation to help humans avoid consuming toxic substances. [11] [12]

During sham feeding sessions of both appetizing and unappetizing foods, 3 cycles per minute (cpm) power was measured. During the sham feeding of appetizing foods, 3cpm power increased. This increase was not reported in the sham feeding of unappetizing foods. [12] The researchers concluded that the presence of this pattern seems to mark the beginning of the body preparing for digestion, and the absence of this pattern in the disgust condition could indicate that the body is readying to reject the food. [12] The increase of 3cpm power is also linked with increased saliva and digestive juice production, all of which support the idea that this reflex, called the cephalic-vagal reflex, [12] is the precursor of digestion. The differential response to appetizing and unappetizing foods suggest that the body uses disgust as a cue to whether a food is good to eat and responds accordingly.

Another emotion with a bodily effect that can be measured by EGG is that of stress. When the body is stressed and engages in the fight-or-flight response, blood flow is directed to the muscles in the arms and legs and away from the digestive system. This loss of blood flow slows the digestive system, and this slowing can be seen on the EGG. [13] However, this response can vary from person to person and situation to situation. [13]

All of these examples are part of a larger theory of a brain–gut connection. This theory states that the vagus nerve provides a direct link between the brain and the gut so that emotions can affect stomach rhythms and vice versa. [12] [13] This idea originated in the mid-1800s when Alexis St. Martin, a man with a gunshot-induced fistula in his abdomen, experienced lower secretions of digestive juices and a slower stomach emptying when he was upset. [13] In this case, the emotions St. Martin was feeling affected his physiological reaction, but the reverse can also be true. In a study with Crohn's disease patients where patients and unaffected controls watched happy, frightening, disgusting, and saddening films, patients with active Crohn's disease had more responsive EGG (a greater physiological response) and reported feeling more aroused when feeling the negative emotions of disgust or sadness. [14] This leads researchers to believe that increased physiological activation can influence increased experience of emotions. [14] Another study published in 1943 that studied the fistulated man Tom discovered that if "Tom was fearful or depressed his gastic activity decreased but when he was angry or hostile his gastric activity increased". [13] This finding is contrasted by an EGG study by Ercolani et al. who had subjects perform either difficult or easy mental arithmetic or puzzles. They found that new tasks slowed down the myoelectrical activity of the stomach, suggesting that stress tends to impede gastric activity and that this can be picked up on an EGG. [15] While there is still much research to be done on the brain-gut connection, research thus far has indeed shown that your stomach does indeed churn differently when you are emotionally aroused, [16] and this could be the basis of the gut feeling that many people describe experiencing.

Gender differences

In recent years, some research has been done about gender differences in the perception and experience of disgust. One such study, upon presenting both male and female subjects with video clips designed to trigger disgust and found that although women reported feeling more disgust than men at these stimuli, the physiological responses did not show much difference. [10] This could mean that, psychologically, women are more sensitive to disgust than men; however this assertion cannot be supported with physiological data. [10] More research has to be done in this area to see if there are gender differences in the psychophysiological experience of disgust.

Unsolved problems

There are some limitations to the use of electrogastroenterography:[ citation needed ]

Other advances

Clinical applications

Electrogastrography or gastroenterography used when a patient is suspected of having a motility disorder, which can be shown, as recurrent nausea and vomiting, signs that the stomach is not emptying food normally. The clinical use of electrogastrography has been most widely evaluated in patients with gastroparesis and functional dyspepsia.

Sources

Related Research Articles

<span class="mw-page-title-main">Stomach</span> Digestive organ

The stomach is a muscular, hollow organ in the upper gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach is involved in the gastric phase of digestion, following the cephalic phase in which the sight and smell of food and the act of chewing are stimuli. In the stomach a chemical breakdown of food takes place by means of secreted digestive enzymes and gastric acid.

<span class="mw-page-title-main">Gastrointestinal tract</span> Organ system within humans and other animals

The gastrointestinal tract is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans and other animals, including the esophagus, stomach, and intestines. Food taken in through the mouth is digested to extract nutrients and absorb energy, and the waste expelled at the anus as faeces. Gastrointestinal is an adjective meaning of or pertaining to the stomach and intestines.

<span class="mw-page-title-main">Peristalsis</span> Radially symmetrical contraction and relaxation of muscles

Peristalsis is a type of intestinal motility, characterized by radially symmetrical contraction and relaxation of muscles that propagate in a wave down a tube, in an anterograde direction. Peristalsis is progression of coordinated contraction of involuntary circular muscles, which is preceded by a simultaneous contraction of the longitudinal muscle and relaxation of the circular muscle in the lining of the gut.

<span class="mw-page-title-main">Enteric nervous system</span> Vital system controlling the gastrointestinal tract

The enteric nervous system (ENS) or intrinsic nervous system is one of the three main divisions of the autonomic nervous system (ANS), the other being the sympathetic (SNS) and parasympathetic nervous system (PSNS), and consists of a mesh-like system of neurons that governs the function of the gastrointestinal tract. It is capable of acting independently of the SNS and PSNS, although it may be influenced by them. The ENS is nicknamed the "second brain". It is derived from neural crest cells.

<span class="mw-page-title-main">Neuroeffector junction</span> Site where a motor neuron releases a neurotransmitter to affect a target cell

A neuroeffector junction is a site where a motor neuron releases a neurotransmitter to affect a target—non-neuronal—cell. This junction functions like a synapse. However, unlike most neurons, somatic efferent motor neurons innervate skeletal muscle, and are always excitatory. Visceral efferent neurons innervate smooth muscle, cardiac muscle, and glands, and have the ability to be either excitatory or inhibitory in function. Neuroeffector junctions are known as neuromuscular junctions when the target cell is a muscle fiber.

Functional gastrointestinal disorders (FGID), also known as disorders of gut–brain interaction, include a number of separate idiopathic disorders which affect different parts of the gastrointestinal tract and involve visceral hypersensitivity and motility disturbances.

Satiety is a state or condition of fullness gratified beyond the point of satisfaction, the opposite of hunger. Following satiation, satiety is a feeling of fullness lasting until the next meal. When food is present in the GI tract after a meal, satiety signals overrule hunger signals, but satiety slowly fades as hunger increases.

<span class="mw-page-title-main">Motilin</span>

Motilin is a 22-amino acid polypeptide hormone in the motilin family that, in humans, is encoded by the MLN gene.

<span class="mw-page-title-main">Enterochromaffin cell</span> Cell type

Enterochromaffin (EC) cells are a type of enteroendocrine cell, and neuroendocrine cell. They reside alongside the epithelium lining the lumen of the digestive tract and play a crucial role in gastrointestinal regulation, particularly intestinal motility and secretion. They were discovered by Nikolai Kulchitsky.

Migrating motor complex, also known as migrating myoelectric complex, migratory motor complex, migratory myoelectric complex and MMC, is a cyclic, recurring motility pattern that occurs in the stomach and small bowel during fasting; it is interrupted by feeding. A pattern of electrical activity is also observed in the gastrointestinal tract in a regular cycle during this interdigestive period.

<span class="mw-page-title-main">Interstitial cell of Cajal</span>

Interstitial cells of Cajal (ICC) are interstitial cells found in the gastrointestinal tract. There are different types of ICC with different functions. ICC and another type of interstitial cell, known as platelet-derived growth factor receptor alpha (PDGFRα) cells, are electrically coupled to smooth muscle cells via gap junctions, that work together as an SIP functional syncytium. Myenteric interstitial cells of Cajal (ICC-MY) serve as pacemaker cells that generate the bioelectrical events known as slow waves. Slow waves conduct to smooth muscle cells and cause phasic contractions.

<span class="mw-page-title-main">Vagovagal reflex</span> Reflex circuits in the gastrointestinal tract

Vagovagal reflex refers to gastrointestinal tract reflex circuits where afferent and efferent fibers of the vagus nerve coordinate responses to gut stimuli via the dorsal vagal complex in the brain. The vagovagal reflex controls contraction of the gastrointestinal muscle layers in response to distension of the tract by food. This reflex also allows for the accommodation of large amounts of food in the gastrointestinal tracts.

<span class="mw-page-title-main">Enteroendocrine cell</span> Cell that produces gastrointestinal hormones

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

Gastrointestinal physiology is the branch of human physiology that addresses the physical function of the gastrointestinal (GI) tract. The function of the GI tract is to process ingested food by mechanical and chemical means, extract nutrients and excrete waste products. The GI tract is composed of the alimentary canal, that runs from the mouth to the anus, as well as the associated glands, chemicals, hormones, and enzymes that assist in digestion. The major processes that occur in the GI tract are: motility, secretion, regulation, digestion and circulation. The proper function and coordination of these processes are vital for maintaining good health by providing for the effective digestion and uptake of nutrients.

<span class="mw-page-title-main">Gastroparesis</span> Medical condition

Gastroparesis, also called delayed gastric emptying is a medical disorder consisting of weak muscular contractions (peristalsis) of the stomach, resulting in food and liquid remaining in the stomach for a prolonged period of time. Stomach contents thus exit more slowly into the duodenum of the digestive tract. This can result in irregular absorption of nutrients, inadequate nutrition, and poor glycemic control. The opposite of this, where stomach contents exit quickly into the duodenum is called dumping syndrome.

A slow-wave potential is a rhythmic electrophysiological event in the gastrointestinal tract. The normal conduction of slow waves is one of the key regulators of gastrointestinal motility. Slow waves are generated and propagated by a class of pacemaker cells called the interstitial cells of Cajal, which also act as intermediates between nerves and smooth muscle cells. Slow waves generated in interstitial cells of Cajal spread to the surrounding smooth muscle cells and control motility.

The basal or basic electrical rhythm (BER) or electrical control activity (ECA) is the spontaneous depolarization and repolarization of pacemaker cells known as interstitial cells of Cajal (ICCs) in the smooth muscle of the stomach, small intestine, and large intestine. This electrical rhythm is spread through gap junctions in the smooth muscle of the GI tract. These pacemaker cells, also called the ICCs, control the frequency of contractions in the gastrointestinal tract. The cells can be located in either the circular or longitudinal layer of the smooth muscle in the GI tract; circular for the small and large intestine, longitudinal for the stomach. The frequency of contraction differs at each location in the GI tract beginning with 3 per minute in the stomach, then 12 per minute in the duodenum, 9 per minute in the ileum, and a normally low one contraction per 30 minutes in the large intestines that increases 3 to 4 times a day due to a phenomenon called mass movement. The basal electrical rhythm controls the frequency of contraction but additional neuronal and hormonal controls regulate the strength of each contraction.

The nervous system, and endocrine system collaborate in the digestive system to control gastric secretions, and motility associated with the movement of food throughout the gastrointestinal tract, including peristalsis, and segmentation contractions.

A prokinetic agent is a type of small peptide drug which enhances gastrointestinal motility by increasing the frequency or strength of contractions, but without disrupting their rhythm. They are used to treat certain gastrointestinal symptoms, including abdominal discomfort, bloating, constipation, heart burn, nausea, and vomiting; and certain gastrointestinal disorders, including irritable bowel syndrome, gastritis, gastroparesis, and functional dyspepsia.

<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

References

  1. Alvarez W. C. (April 15, 1922). "The electrogastrogram and what it shows". J Am Med Assoc . 78 (15): 1116–19. doi:10.1001/jama.1922.02640680020008.
  2. Bowen R. (November 23, 1996). "Electrophysiology of Gastrointestinal Smooth Muscle" . Retrieved February 12, 2008.
  3. Waldhausen, JH; Shaffrey, ME; Skenderis Bs, 2nd; Jones, RS; Schirmer, BD (June 1990). "Gastrointestinal myoelectric and clinical patterns of recovery after laparotomy". Ann. Surg. 211 (6): 777–84, discussion 785. doi:10.1097/00000658-199006000-00018. PMC   1358137 . PMID   2357140.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  4. Ginzburg, G. V.; Costoff, A. "3: Gastrointestinal Physiology. Gastrointestinal Motility". GI Smooth Muscle Electrophysiology: Slow Waves (Basal Electric Rhythm). p. 5. Archived from the original on 2008-06-01. Retrieved 2008-11-03.
  5. Parkman HP, Hasler WL, Barnett JL, Eaker EY (April 2003). "Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force" (PDF). Neurogastroenterol. Motil. 15 (2): 89–102. doi:10.1046/j.1365-2982.2003.00396.x. hdl: 2027.42/71439 . PMID   12680908. S2CID   14981207.
  6. Stendal, Charlotte (1997). Practical guide to gastrointestinal function testing. Oxford: Blackwell Science. ISBN   978-0-632-04918-9.
  7. MediLexicon. Definitions of "Bradygastria" and "Tachygastria" Archived 2016-11-18 at the Wayback Machine .
  8. Federal Register. Vol. 72, No. 148 /Thursday, August 2, 2007/ Proposed Rules, 42997 [ permanent dead link ].
  9. 1 2 Stupin V. A., et al. Peripheral Electrogastroenterography in Clinical Practice // Лечащий Врач.-2005.-№ 2.-С. 60-62 (in Russian).
  10. 1 2 3 Rohrmann, Sonja; Hopp, Henrik; Quirin, Markus (2008). "Gender differences in psychophysiological responses to disgust". Journal of Psychophysiology. 22 (2): 65–75. doi:10.1027/0269-8803.22.2.65.
  11. 1 2 3 4 Meissner, Karin; Muth, Eric R.; Herbert, Beate M. (2011). "Bradygastic activity of the stomach predicts disgust sensitivity and perceived disgust intensity". Biological Psychology. 86 (1): 9–16. doi:10.1016/j.biopsycho.2010.09.014. PMID   20888886. S2CID   17619758.
  12. 1 2 3 4 5 Stern, Robert M.; Jokerst, M.D.; Levine, M.E.; Koch, K.L. (April 2001). "The stomach's response to unappetizing food: cephalic-vagal effects on gastric myoelectric activity". Neurogastroenterology and Motility. 13 (2): 151–154. doi: 10.1046/j.1365-2982.2001.00250.x . PMID   11298993. S2CID   38526901.
  13. 1 2 3 4 5 Stern, Robert M.; Koch, Kenneth L.; Levine, Max E.; Muth, Eric R. (2007). Cacioppo, John T.; Tassinary, Louis G.; Berntson, Gary G. (eds.). Handbook of Psychophysiology (3rd ed.). Cambridge: Cambridge University Press. pp. 211–230.
  14. 1 2 Vianna, Eduardo P.M.; Weinstock, Joel; Elliott, D; Summers, R; Tranel, D (2006). "Increased feelings with increased body signals". Social Cognitive and Affective Neuroscience. 1 (1): 37–48. doi:10.1093/scan/nsl005. PMC   2555412 . PMID   18985099.
  15. Ercolani, Mauro; Baldaro, Bruno; Trombini, Giancarlo (1989). "Effects of Two Tasks and Two Levels of Difficulty on Surface Electrogastrograms". Perceptual and Motor Skills. 69 (1): 99–110. doi:10.2466/pms.1989.69.1.99. PMID   2780207. S2CID   45438472.
  16. Vianna, E.P.M.; Tranel, D. (2006). "Gastric Myoelectrical Activity as an Index of Emotional Arousal". International Journal of Psychophysiology. 61 (1): 70–76. doi:10.1016/j.ijpsycho.2005.10.019. PMID   16403424.
  17. Tokmakçi M (August 2007). "Analysis of the electrogastrogram using discrete wavelet transform and statistical methods to detect gastric dysrhythmia". J Med Syst. 31 (4): 295–302. doi:10.1007/s10916-007-9069-9. PMID   17685154. S2CID   25474190.
  18. Jung E.S., et al. Design and Implementation of the Telemetry Capsule for Measuring of Electrogastrography Archived 2011-07-07 at the Wayback Machine . Proceedings of the 24th IASTED international conference on Biomedical engineering. Innsbruck, Austria, pp. 209-213, 2006, ISBN   0-88986-578-7.